Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,30 +11,31 @@ import pathlib
|
|
11 |
from pathlib import Path
|
12 |
import sys
|
13 |
|
14 |
-
|
|
|
15 |
# from email_validator import validate_email
|
16 |
import gradio as gr
|
17 |
import hydra
|
18 |
import pandas as pd
|
19 |
import plotly.express as px
|
20 |
import requests
|
|
|
21 |
from requests.adapters import HTTPAdapter, Retry
|
22 |
from rdkit import Chem
|
23 |
-
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools
|
24 |
from rdkit.Chem.Scaffolds import MurckoScaffold
|
25 |
import seaborn as sns
|
26 |
|
27 |
import swifter
|
28 |
from tqdm.auto import tqdm
|
29 |
|
30 |
-
from deepscreen.data.dti import
|
31 |
from deepscreen.predict import predict
|
32 |
|
33 |
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
|
34 |
import sascorer
|
35 |
|
36 |
ROOT = Path.cwd()
|
37 |
-
DATA_PATH = Path("./") # Path("/data")
|
38 |
|
39 |
DF_FOR_REPORT = pd.DataFrame()
|
40 |
|
@@ -56,6 +57,7 @@ SESSION.mount('https://', ADAPTER)
|
|
56 |
# SCHEDULER = BackgroundScheduler()
|
57 |
|
58 |
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
|
|
|
59 |
CSS = """
|
60 |
.help-tip {
|
61 |
position: absolute;
|
@@ -63,11 +65,11 @@ CSS = """
|
|
63 |
top: 0px;
|
64 |
right: 0px;
|
65 |
text-align: center;
|
66 |
-
|
67 |
-
border-
|
68 |
width: 24px;
|
69 |
height: 24px;
|
70 |
-
font-size:
|
71 |
line-height: 26px;
|
72 |
cursor: default;
|
73 |
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
|
@@ -75,13 +77,13 @@ CSS = """
|
|
75 |
|
76 |
.help-tip:hover {
|
77 |
cursor: pointer;
|
78 |
-
background-color: #ccc
|
79 |
}
|
80 |
|
81 |
.help-tip:before {
|
82 |
content: '?';
|
83 |
font-weight: 700;
|
84 |
-
color: #
|
85 |
z-index: 100;
|
86 |
}
|
87 |
|
@@ -89,13 +91,13 @@ CSS = """
|
|
89 |
visibility: hidden;
|
90 |
opacity: 0;
|
91 |
text-align: left;
|
92 |
-
background-color: #
|
93 |
padding: 20px;
|
94 |
width: 300px;
|
95 |
position: absolute;
|
96 |
border-radius: 4px;
|
97 |
right: -4px;
|
98 |
-
color: #
|
99 |
font-size: 13px;
|
100 |
line-height: normal;
|
101 |
transform: scale(0.7);
|
@@ -117,7 +119,7 @@ CSS = """
|
|
117 |
width: 0;
|
118 |
height: 0;
|
119 |
border: 6px solid transparent;
|
120 |
-
border-bottom-color: #
|
121 |
right: 10px;
|
122 |
top: -12px;
|
123 |
}
|
@@ -131,16 +133,6 @@ CSS = """
|
|
131 |
left: 0;
|
132 |
}
|
133 |
|
134 |
-
.help-tip a {
|
135 |
-
color: #fff;
|
136 |
-
font-weight: 700;
|
137 |
-
}
|
138 |
-
|
139 |
-
.help-tip a:hover, .help-tip a:focus {
|
140 |
-
color: #fff;
|
141 |
-
text-decoration: underline;
|
142 |
-
}
|
143 |
-
|
144 |
.upload_button {
|
145 |
background-color: #008000;
|
146 |
}
|
@@ -174,46 +166,131 @@ class HelpTip:
|
|
174 |
|
175 |
|
176 |
def sa_score(row):
|
177 |
-
return sascorer.calculateScore(
|
178 |
|
179 |
|
180 |
def mw(row):
|
181 |
-
return Chem.Descriptors.MolWt(
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
def hbd(row):
|
185 |
-
return Lipinski.NumHDonors(
|
186 |
|
187 |
|
188 |
def hba(row):
|
189 |
-
return Lipinski.NumHAcceptors(
|
190 |
|
191 |
|
192 |
def logp(row):
|
193 |
-
return Crippen.MolLogP(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
|
196 |
SCORE_MAP = {
|
197 |
'SAscore': sa_score,
|
198 |
-
'
|
199 |
-
'
|
200 |
-
'
|
201 |
-
'
|
202 |
-
'
|
203 |
-
'
|
204 |
-
'TopoPSA': None,
|
205 |
}
|
206 |
|
207 |
FILTER_MAP = {
|
208 |
-
'
|
209 |
-
"Lipinski's rule of
|
210 |
-
'
|
211 |
-
'
|
|
|
|
|
212 |
}
|
213 |
|
214 |
TASK_MAP = {
|
215 |
-
'Drug-target interaction': '
|
216 |
-
'Drug-target binding affinity': '
|
217 |
}
|
218 |
|
219 |
PRESET_MAP = {
|
@@ -231,22 +308,21 @@ PRESET_MAP = {
|
|
231 |
|
232 |
TARGET_FAMILY_MAP = {
|
233 |
'General': 'general',
|
234 |
-
'Kinase': '
|
235 |
-
'Non-kinase enzyme': '
|
236 |
-
'Membrane receptor': '
|
237 |
-
'Nuclear receptor': '
|
238 |
-
'Ion channel': '
|
239 |
-
'Other protein targets': '
|
240 |
}
|
241 |
|
242 |
TARGET_LIBRARY_MAP = {
|
243 |
-
|
244 |
-
'
|
245 |
-
'
|
246 |
}
|
247 |
|
248 |
DRUG_LIBRARY_MAP = {
|
249 |
-
# 'ChEMBL': 'chembl.csv',
|
250 |
'DrugBank (Human)': 'drugbank_human_py_annot.csv',
|
251 |
}
|
252 |
|
@@ -257,21 +333,28 @@ MODE_LIST = [
|
|
257 |
]
|
258 |
|
259 |
COLUMN_ALIASES = {
|
260 |
-
'X1': '
|
261 |
'X2': 'Target FASTA',
|
262 |
-
'ID1': '
|
263 |
'ID2': 'Target ID',
|
264 |
}
|
265 |
|
266 |
-
URL = "https://ciddr-lab.ac.cn/deepseqreen"
|
267 |
-
|
268 |
|
269 |
def validate_columns(df, mandatory_cols):
|
270 |
missing_cols = [col for col in mandatory_cols if col not in df.columns]
|
271 |
if missing_cols:
|
272 |
error_message = (f"The following mandatory columns are missing "
|
273 |
f"in the uploaded dataset: {str(['X1', 'X2']).strip('[]')}.")
|
274 |
-
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
|
277 |
def send_email(receiver, msg):
|
@@ -280,40 +363,48 @@ def send_email(receiver, msg):
|
|
280 |
|
281 |
def submit_predict(predict_filepath, task, preset, target_family, flag, progress=gr.Progress(track_tqdm=True)):
|
282 |
if flag:
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
#
|
318 |
# except Exception as e:
|
319 |
# raise gr.Error(str(e))
|
@@ -405,18 +496,18 @@ def update_df(file, progress=gr.Progress(track_tqdm=True)):
|
|
405 |
elif 'Y' in DF_FOR_REPORT.columns:
|
406 |
value = 'Y'
|
407 |
|
408 |
-
if value:
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
|
414 |
return create_html_report(DF_FOR_REPORT), pie_chart
|
415 |
else:
|
416 |
return gr.HTML(''), gr.Plot()
|
417 |
|
418 |
|
419 |
-
def create_html_report(df, progress=gr.Progress(track_tqdm=True)):
|
420 |
cols_left = ['ID2', 'Y', 'Y^', 'ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', ]
|
421 |
cols_right = ['X1', 'X2']
|
422 |
cols_left = [col for col in cols_left if col in df.columns]
|
@@ -435,8 +526,12 @@ def create_html_report(df, progress=gr.Progress(track_tqdm=True)):
|
|
435 |
# Return the DataFrame as HTML
|
436 |
PandasTools.RenderImagesInAllDataFrames(images=True)
|
437 |
|
438 |
-
|
439 |
-
|
|
|
|
|
|
|
|
|
440 |
# return gr.HTML(pn.widgets.Tabulator(df).embed())
|
441 |
|
442 |
|
@@ -495,45 +590,46 @@ def submit_report(score_list, filter_list, progress=gr.Progress(track_tqdm=True)
|
|
495 |
df = DF_FOR_REPORT.copy()
|
496 |
try:
|
497 |
for filter_name in filter_list:
|
498 |
-
|
|
|
499 |
|
500 |
for score_name in score_list:
|
501 |
df[score_name] = df.swifter.progress_bar(desc=f"Calculating {score_name}").apply(
|
502 |
SCORE_MAP[score_name], axis=1)
|
503 |
|
504 |
-
pie_chart = None
|
505 |
-
value = None
|
506 |
-
if 'Y^' in df.columns:
|
507 |
-
|
508 |
-
elif 'Y' in df.columns:
|
509 |
-
|
510 |
-
|
511 |
-
if value:
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
|
517 |
-
return create_html_report(df), pie_chart
|
518 |
|
519 |
except Exception as e:
|
520 |
raise gr.Error(str(e))
|
521 |
|
522 |
|
523 |
-
def check_job_status(job_id):
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
|
538 |
|
539 |
def wrap_text(text, line_length=60):
|
@@ -602,60 +698,70 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
602 |
with gr.Blocks() as screen_block:
|
603 |
with gr.Column() as screen_page:
|
604 |
with gr.Row():
|
605 |
-
with gr.Column(
|
606 |
-
target_fasta = gr.Code(label='Target sequence FASTA',
|
607 |
-
interactive=True, lines=5)
|
608 |
-
example_target = gr.Button(value='Example: Human MAPK14', elem_id='example')
|
609 |
with gr.Row():
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
HelpTip("We recommend the appropriate model for your use case based on model performance "
|
657 |
-
"in drug-target interaction or binding affinity prediction "
|
658 |
-
"benchmarked on different target families
|
|
|
659 |
|
660 |
# drug_screen_email = gr.Textbox(
|
661 |
# label='Email (optional)',
|
@@ -663,8 +769,8 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
663 |
# )
|
664 |
|
665 |
with gr.Row(visible=True):
|
666 |
-
drug_screen_clr_btn = gr.ClearButton()
|
667 |
-
drug_screen_btn = gr.Button(value='SCREEN', variant='primary')
|
668 |
# TODO Modify the pd df directly with df['X2'] = target
|
669 |
|
670 |
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
@@ -685,37 +791,45 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
685 |
with gr.Blocks() as identify_block:
|
686 |
with gr.Column() as identify_page:
|
687 |
with gr.Row():
|
688 |
-
with gr.
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
with gr.Column(scale=1):
|
697 |
HelpTip(
|
698 |
-
"""
|
699 |
-
|
700 |
-
|
|
|
701 |
"""
|
702 |
)
|
703 |
-
|
|
|
|
|
704 |
|
705 |
-
|
706 |
-
|
707 |
-
target_library = gr.Radio(label='Target library',
|
708 |
-
choices=list(TARGET_LIBRARY_MAP.keys()) + ['Upload a target library'])
|
709 |
-
target_library_upload = gr.File(label='Custom target library file', visible=True)
|
710 |
|
711 |
-
with gr.Row(
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
719 |
|
720 |
# with gr.Row():
|
721 |
# target_identify_email = gr.Textbox(
|
@@ -724,8 +838,8 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
724 |
# )
|
725 |
|
726 |
with gr.Row(visible=True):
|
727 |
-
target_identify_clr_btn = gr.ClearButton()
|
728 |
-
target_identify_btn = gr.Button(value='IDENTIFY', variant='primary')
|
729 |
|
730 |
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
731 |
identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
@@ -763,8 +877,8 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
763 |
# )
|
764 |
|
765 |
with gr.Row(visible=True):
|
766 |
-
pair_infer_clr_btn = gr.ClearButton()
|
767 |
-
pair_infer_btn = gr.Button(value='INFER', variant='primary')
|
768 |
|
769 |
infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
770 |
f"When it's done, you will be redirected to the report page. "
|
@@ -783,7 +897,7 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
783 |
''')
|
784 |
with gr.Row():
|
785 |
file_for_report = gr.File(interactive=True, type='filepath')
|
786 |
-
|
787 |
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores')
|
788 |
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters')
|
789 |
|
@@ -797,68 +911,105 @@ with (gr.Blocks(theme=theme, title='DeepScreen', css=CSS) as demo):
|
|
797 |
ranking_pie_chart = gr.Plot(visible=False)
|
798 |
|
799 |
with gr.Row():
|
800 |
-
|
801 |
-
|
|
|
|
|
|
|
|
|
802 |
|
803 |
|
804 |
def target_input_type_select(input_type):
|
805 |
match input_type:
|
806 |
case 'UniProt ID':
|
807 |
-
return [gr.
|
808 |
-
gr.
|
809 |
-
gr.
|
|
|
|
|
|
|
|
|
810 |
case 'Gene symbol':
|
811 |
-
return [gr.
|
812 |
-
gr.
|
813 |
-
gr.
|
|
|
|
|
|
|
|
|
814 |
case 'Sequence':
|
815 |
-
return [gr.
|
816 |
-
gr.
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
822 |
|
823 |
|
824 |
-
def uniprot_query(
|
825 |
fasta_seq = ''
|
826 |
-
query = query.strip()
|
827 |
|
828 |
match input_type:
|
829 |
case 'UniProt ID':
|
830 |
-
query = f"{
|
831 |
case 'Gene symbol':
|
832 |
-
query = f'search?query=
|
833 |
|
834 |
try:
|
835 |
fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query))
|
836 |
fasta.raise_for_status()
|
837 |
fasta_seq = fasta.text
|
838 |
except Exception as e:
|
839 |
-
raise gr.Warning(f"Failed to query FASTA from UniProt due to {str(e)}")
|
840 |
finally:
|
841 |
return fasta_seq
|
842 |
|
843 |
|
844 |
target_upload_btn.upload(fn=lambda x: x.decode(), inputs=target_upload_btn, outputs=target_fasta)
|
845 |
-
target_query_btn.click(uniprot_query,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
846 |
|
847 |
target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
848 |
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
849 |
-
|
850 |
-
|
|
|
|
|
851 |
|
852 |
|
853 |
def example_fill(input_type):
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
case 'Gene symbol':
|
858 |
-
query = 'MAPK14'
|
859 |
-
case _:
|
860 |
-
query = ''
|
861 |
-
return {target_query: query,
|
862 |
target_fasta: """
|
863 |
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
|
864 |
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
|
@@ -870,101 +1021,218 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
870 |
"""}
|
871 |
|
872 |
|
873 |
-
|
874 |
-
|
875 |
-
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=drug_smiles, show_progress=False)
|
876 |
|
877 |
|
878 |
-
def
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
906 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
907 |
else:
|
908 |
gr.Warning('You have another prediction job '
|
909 |
'(drug hit screening, target protein identification, or interation pair inference) '
|
910 |
'running in the session right now. '
|
911 |
'Please submit another job when your current job has finished.')
|
912 |
-
return {screen_flag: False
|
|
|
913 |
|
914 |
-
def target_identify_validate(smiles, library, library_upload, state):
|
915 |
-
if not state:
|
916 |
-
err = validate_seq_str(smiles, SMILES_PAT)
|
917 |
-
if err:
|
918 |
-
raise gr.Error(f'Found error(s) in your compound SMILES input: {err}')
|
919 |
-
|
920 |
-
if library in TARGET_LIBRARY_MAP.keys():
|
921 |
-
identify_df = pd.read_csv(TARGET_LIBRARY_MAP['target_library'])
|
922 |
-
else:
|
923 |
-
identify_df = pd.read_csv(library_upload)
|
924 |
-
validate_columns(identify_df, ['X2'])
|
925 |
-
|
926 |
-
identify_df['X1'] = smiles
|
927 |
-
|
928 |
-
job_id = uuid4()
|
929 |
-
temp_file = Path(f'{job_id}_temp.csv').resolve()
|
930 |
-
identify_df.to_csv(temp_file)
|
931 |
-
if temp_file.is_file():
|
932 |
-
return {identify_data_for_predict: str(temp_file),
|
933 |
-
identify_flag: gr.State(job_id),
|
934 |
-
run_state: gr.State(job_id)}
|
935 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
936 |
else:
|
937 |
gr.Warning('You have another prediction job '
|
938 |
'(drug hit screening, target protein identification, or interation pair inference) '
|
939 |
'running in the session right now. '
|
940 |
'Please submit another job when your current job has finished.')
|
941 |
-
return {identify_flag: False
|
|
|
|
|
942 |
|
943 |
|
944 |
-
def pair_infer_validate(drug_target_pair_upload,
|
945 |
-
if not
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
961 |
|
962 |
else:
|
963 |
gr.Warning('You have another prediction job '
|
964 |
'(drug hit screening, target protein identification, or interation pair inference) '
|
965 |
'running in the session right now. '
|
966 |
'Please submit another job when your current job has finished.')
|
967 |
-
return {infer_flag: False
|
|
|
968 |
|
969 |
|
970 |
drug_screen_btn.click(
|
@@ -980,25 +1248,25 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
980 |
drug_screen_target_family, screen_flag], # , drug_screen_email],
|
981 |
outputs=[file_for_report, run_state]
|
982 |
).then(
|
983 |
-
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
|
984 |
-
outputs=[screen_page, screen_waiting]
|
985 |
)
|
986 |
|
987 |
target_identify_btn.click(
|
988 |
fn=target_identify_validate,
|
989 |
-
inputs=[
|
990 |
outputs=[identify_data_for_predict, identify_flag, run_state]
|
991 |
).then(
|
992 |
-
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
|
993 |
-
outputs=[identify_page, identify_waiting]
|
994 |
).then(
|
995 |
fn=submit_predict,
|
996 |
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
|
997 |
target_identify_target_family, identify_flag], # , target_identify_email],
|
998 |
outputs=[file_for_report, run_state]
|
999 |
).then(
|
1000 |
-
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
|
1001 |
-
outputs=[identify_page, identify_waiting]
|
1002 |
)
|
1003 |
|
1004 |
pair_infer_btn.click(
|
@@ -1020,9 +1288,36 @@ QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
|
|
1020 |
|
1021 |
# TODO background job from these 3 pipelines to update file_for_report
|
1022 |
|
1023 |
-
file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1024 |
|
1025 |
-
|
|
|
1026 |
|
1027 |
# screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
|
1028 |
# every=5)
|
@@ -1043,9 +1338,5 @@ if __name__ == "__main__":
|
|
1043 |
# SCHEDULER.start()
|
1044 |
|
1045 |
demo.launch(
|
1046 |
-
# debug=True,
|
1047 |
show_api=False,
|
1048 |
-
# favicon_path=,
|
1049 |
-
# inline=False
|
1050 |
-
debug=True
|
1051 |
)
|
|
|
11 |
from pathlib import Path
|
12 |
import sys
|
13 |
|
14 |
+
import numpy as np
|
15 |
+
from Bio.Align import PairwiseAligner
|
16 |
# from email_validator import validate_email
|
17 |
import gradio as gr
|
18 |
import hydra
|
19 |
import pandas as pd
|
20 |
import plotly.express as px
|
21 |
import requests
|
22 |
+
from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds, CalcNumHeavyAtoms, CalcNumAtoms
|
23 |
from requests.adapters import HTTPAdapter, Retry
|
24 |
from rdkit import Chem
|
25 |
+
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools, AllChem
|
26 |
from rdkit.Chem.Scaffolds import MurckoScaffold
|
27 |
import seaborn as sns
|
28 |
|
29 |
import swifter
|
30 |
from tqdm.auto import tqdm
|
31 |
|
32 |
+
from deepscreen.data.dti import validate_seq_str, FASTA_PAT, SMILES_PAT
|
33 |
from deepscreen.predict import predict
|
34 |
|
35 |
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
|
36 |
import sascorer
|
37 |
|
38 |
ROOT = Path.cwd()
|
|
|
39 |
|
40 |
DF_FOR_REPORT = pd.DataFrame()
|
41 |
|
|
|
57 |
# SCHEDULER = BackgroundScheduler()
|
58 |
|
59 |
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
|
60 |
+
|
61 |
CSS = """
|
62 |
.help-tip {
|
63 |
position: absolute;
|
|
|
65 |
top: 0px;
|
66 |
right: 0px;
|
67 |
text-align: center;
|
68 |
+
border-radius: 40%;
|
69 |
+
/* border: 2px solid darkred; background-color: #8B0000;*/
|
70 |
width: 24px;
|
71 |
height: 24px;
|
72 |
+
font-size: 16px;
|
73 |
line-height: 26px;
|
74 |
cursor: default;
|
75 |
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
|
|
|
77 |
|
78 |
.help-tip:hover {
|
79 |
cursor: pointer;
|
80 |
+
/*background-color: #ccc;*/
|
81 |
}
|
82 |
|
83 |
.help-tip:before {
|
84 |
content: '?';
|
85 |
font-weight: 700;
|
86 |
+
color: #8B0000;
|
87 |
z-index: 100;
|
88 |
}
|
89 |
|
|
|
91 |
visibility: hidden;
|
92 |
opacity: 0;
|
93 |
text-align: left;
|
94 |
+
background-color: #EFDDE3;
|
95 |
padding: 20px;
|
96 |
width: 300px;
|
97 |
position: absolute;
|
98 |
border-radius: 4px;
|
99 |
right: -4px;
|
100 |
+
color: #494F5A;
|
101 |
font-size: 13px;
|
102 |
line-height: normal;
|
103 |
transform: scale(0.7);
|
|
|
119 |
width: 0;
|
120 |
height: 0;
|
121 |
border: 6px solid transparent;
|
122 |
+
border-bottom-color: #EFDDE3;
|
123 |
right: 10px;
|
124 |
top: -12px;
|
125 |
}
|
|
|
133 |
left: 0;
|
134 |
}
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
.upload_button {
|
137 |
background-color: #008000;
|
138 |
}
|
|
|
166 |
|
167 |
|
168 |
def sa_score(row):
|
169 |
+
return sascorer.calculateScore(row['Compound'])
|
170 |
|
171 |
|
172 |
def mw(row):
|
173 |
+
return Chem.Descriptors.MolWt(row['Compound'])
|
174 |
+
|
175 |
+
|
176 |
+
def mr(row):
|
177 |
+
return Crippen.MolMR(row['Compound'])
|
178 |
|
179 |
|
180 |
def hbd(row):
|
181 |
+
return Lipinski.NumHDonors(row['Compound'])
|
182 |
|
183 |
|
184 |
def hba(row):
|
185 |
+
return Lipinski.NumHAcceptors(row['Compound'])
|
186 |
|
187 |
|
188 |
def logp(row):
|
189 |
+
return Crippen.MolLogP(row['Compound'])
|
190 |
+
|
191 |
+
|
192 |
+
def atom(row):
|
193 |
+
return CalcNumAtoms(row['Compound'])
|
194 |
+
|
195 |
+
|
196 |
+
def heavy_atom(row):
|
197 |
+
return CalcNumHeavyAtoms(row['Compound'])
|
198 |
+
|
199 |
+
|
200 |
+
def rotatable_bond(row):
|
201 |
+
return CalcNumRotatableBonds((row['Compound']))
|
202 |
+
|
203 |
+
|
204 |
+
def lipinski(row):
|
205 |
+
"""
|
206 |
+
Lipinski's rules:
|
207 |
+
Hydrogen bond donors <= 5
|
208 |
+
Hydrogen bond acceptors <= 10
|
209 |
+
Molecular weight <= 500 daltons
|
210 |
+
logP <= 5
|
211 |
+
"""
|
212 |
+
if hbd(row) > 5:
|
213 |
+
return False
|
214 |
+
elif hba(row) > 10:
|
215 |
+
return False
|
216 |
+
elif mw(row) > 500:
|
217 |
+
return False
|
218 |
+
elif logp(row) > 5:
|
219 |
+
return False
|
220 |
+
else:
|
221 |
+
return True
|
222 |
+
|
223 |
+
|
224 |
+
def reos(row):
|
225 |
+
"""
|
226 |
+
Rapid Elimination Of Swill filter:
|
227 |
+
Molecular weight between 200 and 500
|
228 |
+
LogP between -5.0 and +5.0
|
229 |
+
H-bond donor count between 0 and 5
|
230 |
+
H-bond acceptor count between 0 and 10
|
231 |
+
Formal charge between -2 and +2
|
232 |
+
Rotatable bond count between 0 and 8
|
233 |
+
Heavy atom count between 15 and 50
|
234 |
+
"""
|
235 |
+
if not 200 < mw(row) < 500:
|
236 |
+
return False
|
237 |
+
elif not -5.0 < logp(row) < 5.0:
|
238 |
+
return False
|
239 |
+
elif not 0 < hbd(row) < 5:
|
240 |
+
return False
|
241 |
+
elif not 0 < hba(row) < 10:
|
242 |
+
return False
|
243 |
+
elif not 0 < rotatable_bond(row) < 8:
|
244 |
+
return False
|
245 |
+
elif not 15 < heavy_atom(row) < 50:
|
246 |
+
return False
|
247 |
+
else:
|
248 |
+
return True
|
249 |
+
|
250 |
+
|
251 |
+
def ghose(row):
|
252 |
+
"""
|
253 |
+
Ghose drug like filter:
|
254 |
+
Molecular weight between 160 and 480
|
255 |
+
LogP between -0.4 and +5.6
|
256 |
+
Atom count between 20 and 70
|
257 |
+
Molar refractivity between 40 and 130
|
258 |
+
"""
|
259 |
+
if not 160 < mw(row) < 480:
|
260 |
+
return False
|
261 |
+
elif not -0.4 < logp(row) < 5.6:
|
262 |
+
return False
|
263 |
+
elif not 20 < atom(row) < 70:
|
264 |
+
return False
|
265 |
+
elif not 40 < mr(row) < 130:
|
266 |
+
return False
|
267 |
+
else:
|
268 |
+
return True
|
269 |
|
270 |
|
271 |
SCORE_MAP = {
|
272 |
'SAscore': sa_score,
|
273 |
+
'LogP': logp,
|
274 |
+
'Molecular weight': mw,
|
275 |
+
'Molar refractivity': mr,
|
276 |
+
'H-bond donor count': hbd,
|
277 |
+
'H-Bond acceptor count': hba,
|
278 |
+
'Rotatable bond count': rotatable_bond,
|
279 |
+
# 'TopoPSA': None,
|
280 |
}
|
281 |
|
282 |
FILTER_MAP = {
|
283 |
+
'REOS': reos,
|
284 |
+
"Lipinski's rule of 5": lipinski,
|
285 |
+
'Ghose': ghose,
|
286 |
+
# 'Rule of 3': rule_of_3,
|
287 |
+
# 'Veber': veber,
|
288 |
+
# 'PAINS': pains,
|
289 |
}
|
290 |
|
291 |
TASK_MAP = {
|
292 |
+
'Drug-target interaction': 'DTI',
|
293 |
+
'Drug-target binding affinity': 'DTA',
|
294 |
}
|
295 |
|
296 |
PRESET_MAP = {
|
|
|
308 |
|
309 |
TARGET_FAMILY_MAP = {
|
310 |
'General': 'general',
|
311 |
+
'Kinase': 'kinase',
|
312 |
+
'Non-kinase enzyme': 'enzyme',
|
313 |
+
'Membrane receptor': 'membrane',
|
314 |
+
'Nuclear receptor': 'nuclear',
|
315 |
+
'Ion channel': 'ion',
|
316 |
+
'Other protein targets': 'others',
|
317 |
}
|
318 |
|
319 |
TARGET_LIBRARY_MAP = {
|
320 |
+
'ChEMBL33 (all species)': 'ChEMBL33_all_spe_single_prot_info.csv.csv',
|
321 |
+
'STITCH': 'stitch.csv',
|
322 |
+
'Drug Repurposing Hub': 'drug_repurposing_hub.csv',
|
323 |
}
|
324 |
|
325 |
DRUG_LIBRARY_MAP = {
|
|
|
326 |
'DrugBank (Human)': 'drugbank_human_py_annot.csv',
|
327 |
}
|
328 |
|
|
|
333 |
]
|
334 |
|
335 |
COLUMN_ALIASES = {
|
336 |
+
'X1': 'Compound SMILES',
|
337 |
'X2': 'Target FASTA',
|
338 |
+
'ID1': 'Compound ID',
|
339 |
'ID2': 'Target ID',
|
340 |
}
|
341 |
|
|
|
|
|
342 |
|
343 |
def validate_columns(df, mandatory_cols):
|
344 |
missing_cols = [col for col in mandatory_cols if col not in df.columns]
|
345 |
if missing_cols:
|
346 |
error_message = (f"The following mandatory columns are missing "
|
347 |
f"in the uploaded dataset: {str(['X1', 'X2']).strip('[]')}.")
|
348 |
+
raise ValueError(error_message)
|
349 |
+
else:
|
350 |
+
return
|
351 |
+
|
352 |
+
|
353 |
+
def process_target_fasta(sequence):
|
354 |
+
lines = sequence.strip().split("\n")
|
355 |
+
if lines[0].startswith(">"):
|
356 |
+
lines = lines[1:]
|
357 |
+
return ''.join(lines).split(">")[0]
|
358 |
|
359 |
|
360 |
def send_email(receiver, msg):
|
|
|
363 |
|
364 |
def submit_predict(predict_filepath, task, preset, target_family, flag, progress=gr.Progress(track_tqdm=True)):
|
365 |
if flag:
|
366 |
+
try:
|
367 |
+
job_id = flag
|
368 |
+
global COLUMN_ALIASES
|
369 |
+
task = TASK_MAP[task]
|
370 |
+
preset = PRESET_MAP[preset]
|
371 |
+
target_family = TARGET_FAMILY_MAP[target_family]
|
372 |
+
# email_hash = hashlib.sha256(email.encode()).hexdigest()
|
373 |
+
COLUMN_ALIASES = COLUMN_ALIASES | {
|
374 |
+
'Y': 'Actual interaction' if task == 'binary' else 'Actual affinity',
|
375 |
+
'Y^': 'Predicted interaction' if task == 'binary' else 'Predicted affinity'
|
376 |
+
}
|
377 |
+
|
378 |
+
# target_family_list = [target_family]
|
379 |
+
# for family in target_family_list:
|
380 |
+
|
381 |
+
# try:
|
382 |
+
prediction_df = pd.DataFrame()
|
383 |
+
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
|
384 |
+
cfg = hydra.compose(
|
385 |
+
config_name="webserver_inference",
|
386 |
+
overrides=[f"task={task}",
|
387 |
+
f"preset={preset}",
|
388 |
+
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
|
389 |
+
f"data.data_file='{str(predict_filepath)}'"])
|
390 |
+
|
391 |
+
predictions, _ = predict(cfg)
|
392 |
+
predictions = [pd.DataFrame(prediction) for prediction in predictions]
|
393 |
+
prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
|
394 |
+
|
395 |
+
predictions_file = f'temp/{job_id}_predictions.csv'
|
396 |
+
prediction_df.to_csv(predictions_file, index=False)
|
397 |
+
|
398 |
+
return [predictions_file,
|
399 |
+
False]
|
400 |
+
except Exception as e:
|
401 |
+
gr.Warning(f"Prediction job failed due to error: {str(e)}")
|
402 |
+
return [None,
|
403 |
+
False]
|
404 |
+
|
405 |
+
else:
|
406 |
+
return [None,
|
407 |
+
False]
|
408 |
#
|
409 |
# except Exception as e:
|
410 |
# raise gr.Error(str(e))
|
|
|
496 |
elif 'Y' in DF_FOR_REPORT.columns:
|
497 |
value = 'Y'
|
498 |
|
499 |
+
# if value:
|
500 |
+
# if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique():
|
501 |
+
# pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100)
|
502 |
+
# elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique():
|
503 |
+
# pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100)
|
504 |
|
505 |
return create_html_report(DF_FOR_REPORT), pie_chart
|
506 |
else:
|
507 |
return gr.HTML(''), gr.Plot()
|
508 |
|
509 |
|
510 |
+
def create_html_report(df, file=None, progress=gr.Progress(track_tqdm=True)):
|
511 |
cols_left = ['ID2', 'Y', 'Y^', 'ID1', 'Compound', 'Scaffold', 'Scaffold SMILES', ]
|
512 |
cols_right = ['X1', 'X2']
|
513 |
cols_left = [col for col in cols_left if col in df.columns]
|
|
|
526 |
# Return the DataFrame as HTML
|
527 |
PandasTools.RenderImagesInAllDataFrames(images=True)
|
528 |
|
529 |
+
if not file:
|
530 |
+
html = df.to_html()
|
531 |
+
return f'<div style="overflow:auto; height: 500px;">{html}</div>'
|
532 |
+
else:
|
533 |
+
html = df.to_html(file)
|
534 |
+
return html
|
535 |
# return gr.HTML(pn.widgets.Tabulator(df).embed())
|
536 |
|
537 |
|
|
|
590 |
df = DF_FOR_REPORT.copy()
|
591 |
try:
|
592 |
for filter_name in filter_list:
|
593 |
+
df[filter_name] = df.swifter.progress_bar(desc=f"Calculating {filter_name}").apply(
|
594 |
+
FILTER_MAP[filter_name], axis=1)
|
595 |
|
596 |
for score_name in score_list:
|
597 |
df[score_name] = df.swifter.progress_bar(desc=f"Calculating {score_name}").apply(
|
598 |
SCORE_MAP[score_name], axis=1)
|
599 |
|
600 |
+
# pie_chart = None
|
601 |
+
# value = None
|
602 |
+
# if 'Y^' in df.columns:
|
603 |
+
# value = 'Y^'
|
604 |
+
# elif 'Y' in df.columns:
|
605 |
+
# value = 'Y'
|
606 |
+
#
|
607 |
+
# if value:
|
608 |
+
# if df['X1'].nunique() > 1 >= df['X2'].nunique():
|
609 |
+
# pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100)
|
610 |
+
# elif df['X2'].nunique() > 1 >= df['X1'].nunique():
|
611 |
+
# pie_chart = create_pie_chart(df, category='Target family', value=value, top_k=100)
|
612 |
|
613 |
+
return create_html_report(df), df # pie_chart
|
614 |
|
615 |
except Exception as e:
|
616 |
raise gr.Error(str(e))
|
617 |
|
618 |
|
619 |
+
# def check_job_status(job_id):
|
620 |
+
# job_lock = DATA_PATH / f"{job_id}.lock"
|
621 |
+
# job_file = DATA_PATH / f"{job_id}.csv"
|
622 |
+
# if job_lock.is_file():
|
623 |
+
# return {gr.Markdown(f"Your job ({job_id}) is still running... "
|
624 |
+
# f"You may stay on this page or come back later to retrieve the results "
|
625 |
+
# f"Once you receive our email notification."),
|
626 |
+
# None,
|
627 |
+
# None
|
628 |
+
# }
|
629 |
+
# elif job_file.is_file():
|
630 |
+
# return {gr.Markdown(f"Your job ({job_id}) is done! Redirecting you to generate reports..."),
|
631 |
+
# gr.Tabs(selected=3),
|
632 |
+
# gr.File(str(job_lock))}
|
633 |
|
634 |
|
635 |
def wrap_text(text, line_length=60):
|
|
|
698 |
with gr.Blocks() as screen_block:
|
699 |
with gr.Column() as screen_page:
|
700 |
with gr.Row():
|
701 |
+
with gr.Column():
|
|
|
|
|
|
|
702 |
with gr.Row():
|
703 |
+
target_input_type = gr.Dropdown(
|
704 |
+
label='Target Input Type',
|
705 |
+
choices=['Sequence', 'UniProt ID', 'Gene symbol'],
|
706 |
+
info='Enter (paste) a FASTA string below manually or upload a FASTA file.',
|
707 |
+
value='Sequence',
|
708 |
+
scale=3, interactive=True
|
709 |
+
)
|
710 |
+
target_id = gr.Textbox(show_label=False, visible=False,
|
711 |
+
interactive=True, scale=4,
|
712 |
+
info='Query a sequence on UniProt with a UniProt ID.')
|
713 |
+
target_gene = gr.Textbox(
|
714 |
+
show_label=False, visible=False,
|
715 |
+
interactive=True, scale=4,
|
716 |
+
info='Query a sequence on UniProt with a gene symbol.')
|
717 |
+
target_organism = gr.Textbox(
|
718 |
+
info='Organism common name or scientific name (default: human).',
|
719 |
+
placeholder='Human', show_label=False,
|
720 |
+
visible=False, interactive=True, scale=4, )
|
721 |
+
HelpTip(
|
722 |
+
"Target amino acid sequence in the FASTA format. Alternatively, you may use a "
|
723 |
+
"UniProt ID/accession to query UniProt database for the sequence of your "
|
724 |
+
"target of interest. If the input FASTA contains multiple entities, "
|
725 |
+
"only the first one will be used."
|
726 |
+
)
|
727 |
+
with gr.Column():
|
728 |
+
drug_screen_target_family = gr.Dropdown(
|
729 |
+
choices=list(TARGET_FAMILY_MAP.keys()),
|
730 |
+
value='General',
|
731 |
+
label='Select Input Protein Family (Optional)', interactive=True)
|
732 |
+
# with gr.Column(scale=1, min_width=24):
|
733 |
+
HelpTip(
|
734 |
+
"Identify the protein family by conducting sequence alignment. "
|
735 |
+
"You may select General if you find the alignment score unsatisfactory."
|
736 |
+
)
|
737 |
+
with gr.Row():
|
738 |
+
with gr.Column():
|
739 |
+
target_upload_btn = gr.UploadButton(label='Upload a FASTA file', type='binary',
|
740 |
+
visible=True, variant='primary',
|
741 |
+
size='lg')
|
742 |
+
target_query_btn = gr.Button(value='Query the sequence', variant='primary',
|
743 |
+
visible=False)
|
744 |
+
target_family_detect_btn = gr.Button(value='Auto-detect', variant='primary')
|
745 |
+
|
746 |
+
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5)
|
747 |
+
example_fasta = gr.Button(value='Example: Human MAPK14', elem_id='example')
|
748 |
+
|
749 |
+
with gr.Row():
|
750 |
+
with gr.Column():
|
751 |
+
drug_library = gr.Dropdown(label='Select a Compound Library',
|
752 |
+
choices=list(DRUG_LIBRARY_MAP.keys()))
|
753 |
+
drug_library_upload_btn = gr.UploadButton(
|
754 |
+
label='Upload a custom library', variant='primary')
|
755 |
+
drug_library_upload = gr.File(label='Custom drug library file', visible=False)
|
756 |
+
drug_screen_task = gr.Dropdown(list(TASK_MAP.keys()), label='Select a Prediction Task',
|
757 |
+
value='Drug-target interaction')
|
758 |
+
with gr.Column():
|
759 |
+
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Select a Preset Model')
|
760 |
+
screen_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
761 |
HelpTip("We recommend the appropriate model for your use case based on model performance "
|
762 |
+
"in drug-target interaction or binding affinity prediction. "
|
763 |
+
"The models were benchmarked on different target families "
|
764 |
+
"and real-world data scenarios.")
|
765 |
|
766 |
# drug_screen_email = gr.Textbox(
|
767 |
# label='Email (optional)',
|
|
|
769 |
# )
|
770 |
|
771 |
with gr.Row(visible=True):
|
772 |
+
drug_screen_clr_btn = gr.ClearButton(size='lg')
|
773 |
+
drug_screen_btn = gr.Button(value='SCREEN', variant='primary', size='lg')
|
774 |
# TODO Modify the pd df directly with df['X2'] = target
|
775 |
|
776 |
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
|
|
791 |
with gr.Blocks() as identify_block:
|
792 |
with gr.Column() as identify_page:
|
793 |
with gr.Row():
|
794 |
+
with gr.Column():
|
795 |
+
compound_type = gr.Dropdown(
|
796 |
+
label='Compound Input Type',
|
797 |
+
choices=['SMILES', 'SDF'],
|
798 |
+
info='Enter (paste) an SMILES string or upload an SMI file.',
|
799 |
+
value='SMILES',
|
800 |
+
interactive=True)
|
801 |
+
compound_upload_btn = gr.UploadButton(label='Upload', variant='primary', type='binary')
|
|
|
802 |
HelpTip(
|
803 |
+
"""Compound molecule in the SMILES format. You may input the SMILES string directly,
|
804 |
+
upload an SMI file, or upload an SDF file to convert to SMILES. Alternatively,
|
805 |
+
you may search on databases like NCBI PubChem, ChEMBL, and DrugBank for the SMILES
|
806 |
+
representing your drug of interest.
|
807 |
"""
|
808 |
)
|
809 |
+
with gr.Column():
|
810 |
+
target_identify_target_family = gr.Dropdown(choices=['General'], value='General',
|
811 |
+
label='Target Protein Family')
|
812 |
|
813 |
+
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5)
|
814 |
+
example_drug = gr.Button(value='Example: Aspirin', elem_id='example')
|
|
|
|
|
|
|
815 |
|
816 |
+
with gr.Row():
|
817 |
+
with gr.Column():
|
818 |
+
target_library = gr.Dropdown(label='Select a Target Library',
|
819 |
+
choices=list(TARGET_LIBRARY_MAP.keys()))
|
820 |
+
target_library_upload_btn = gr.UploadButton(
|
821 |
+
label='Upload a custom library', variant='primary')
|
822 |
+
target_library_upload = gr.File(label='Custom target library file', visible=False)
|
823 |
+
target_identify_task = gr.Dropdown(list(TASK_MAP.keys()), label='Select a Prediction Task',
|
824 |
+
value='Drug-target interaction')
|
825 |
+
|
826 |
+
with gr.Column():
|
827 |
+
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
|
828 |
+
identify_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
|
829 |
+
HelpTip("We recommend the appropriate model for your use case based on model performance "
|
830 |
+
"in drug-target interaction or binding affinity prediction. "
|
831 |
+
"The models were benchmarked on different target families "
|
832 |
+
"and real-world data scenarios.")
|
833 |
|
834 |
# with gr.Row():
|
835 |
# target_identify_email = gr.Textbox(
|
|
|
838 |
# )
|
839 |
|
840 |
with gr.Row(visible=True):
|
841 |
+
target_identify_clr_btn = gr.ClearButton(size='lg')
|
842 |
+
target_identify_btn = gr.Button(value='IDENTIFY', variant='primary', size='lg')
|
843 |
|
844 |
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
|
845 |
identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
|
|
877 |
# )
|
878 |
|
879 |
with gr.Row(visible=True):
|
880 |
+
pair_infer_clr_btn = gr.ClearButton(size='lg')
|
881 |
+
pair_infer_btn = gr.Button(value='INFER', variant='primary', size='lg')
|
882 |
|
883 |
infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
|
884 |
f"When it's done, you will be redirected to the report page. "
|
|
|
897 |
''')
|
898 |
with gr.Row():
|
899 |
file_for_report = gr.File(interactive=True, type='filepath')
|
900 |
+
df_raw = gr.Dataframe(type="pandas", interactive=False, visible=False)
|
901 |
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores')
|
902 |
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters')
|
903 |
|
|
|
911 |
ranking_pie_chart = gr.Plot(visible=False)
|
912 |
|
913 |
with gr.Row():
|
914 |
+
with gr.Column():
|
915 |
+
csv_generate = gr.Button(value='Generate raw data (CSV)')
|
916 |
+
csv_download_file = gr.File(label='Download raw data (CSV)', visible=False)
|
917 |
+
with gr.Column():
|
918 |
+
html_generate = gr.Button(value='Generate report (HTML)')
|
919 |
+
html_download_file = gr.File(label='Download report (HTML)', visible=False)
|
920 |
|
921 |
|
922 |
def target_input_type_select(input_type):
|
923 |
match input_type:
|
924 |
case 'UniProt ID':
|
925 |
+
return [gr.Dropdown(info=''),
|
926 |
+
gr.UploadButton(visible=False),
|
927 |
+
gr.Textbox(visible=True, value=''),
|
928 |
+
gr.Textbox(visible=False, value=''),
|
929 |
+
gr.Textbox(visible=False, value=''),
|
930 |
+
gr.Button(visible=True),
|
931 |
+
gr.Code(interactive=False, value='')]
|
932 |
case 'Gene symbol':
|
933 |
+
return [gr.Dropdown(info=''),
|
934 |
+
gr.UploadButton(visible=False),
|
935 |
+
gr.Textbox(visible=False, value=''),
|
936 |
+
gr.Textbox(visible=True, value=''),
|
937 |
+
gr.Textbox(visible=True, value=''),
|
938 |
+
gr.Button(visible=True),
|
939 |
+
gr.Code(interactive=False, value='')]
|
940 |
case 'Sequence':
|
941 |
+
return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'),
|
942 |
+
gr.UploadButton(visible=True),
|
943 |
+
gr.Textbox(visible=False, value=''),
|
944 |
+
gr.Textbox(visible=False, value=''),
|
945 |
+
gr.Textbox(visible=False, value=''),
|
946 |
+
gr.Button(visible=False),
|
947 |
+
gr.Code(interactive=True, value='')]
|
948 |
+
|
949 |
+
|
950 |
+
target_input_type.select(
|
951 |
+
fn=target_input_type_select,
|
952 |
+
inputs=target_input_type,
|
953 |
+
outputs=[
|
954 |
+
target_input_type, target_upload_btn, target_id, target_gene, target_organism, target_query_btn
|
955 |
+
],
|
956 |
+
show_progress=False
|
957 |
+
)
|
958 |
|
959 |
|
960 |
+
def uniprot_query(input_type, uid, gene, organism='Human'):
|
961 |
fasta_seq = ''
|
|
|
962 |
|
963 |
match input_type:
|
964 |
case 'UniProt ID':
|
965 |
+
query = f"{uid.strip()}.fasta"
|
966 |
case 'Gene symbol':
|
967 |
+
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta'
|
968 |
|
969 |
try:
|
970 |
fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query))
|
971 |
fasta.raise_for_status()
|
972 |
fasta_seq = fasta.text
|
973 |
except Exception as e:
|
974 |
+
raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}")
|
975 |
finally:
|
976 |
return fasta_seq
|
977 |
|
978 |
|
979 |
target_upload_btn.upload(fn=lambda x: x.decode(), inputs=target_upload_btn, outputs=target_fasta)
|
980 |
+
target_query_btn.click(uniprot_query,
|
981 |
+
inputs=[target_input_type, target_id, target_gene, target_organism],
|
982 |
+
outputs=target_fasta)
|
983 |
+
|
984 |
+
|
985 |
+
def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)):
|
986 |
+
aligner = PairwiseAligner(scoring='blastp', mode='local')
|
987 |
+
alignment_df = pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv')
|
988 |
+
|
989 |
+
def align_score(query):
|
990 |
+
return aligner.align(process_target_fasta(fasta), query).score
|
991 |
+
|
992 |
+
alignment_df['score'] = alignment_df['X2'].swifter.progress_bar(
|
993 |
+
desc="Detecting protein family of the target...").apply(align_score)
|
994 |
+
row = alignment_df.loc[alignment_df['score'].idxmax()]
|
995 |
+
return gr.Dropdown(value=row['protein_family'].capitalize(),
|
996 |
+
info=f"Reason: Best BLASTP score ({row['score']}) with {row['ID2']} from family {row['protein_family']}")
|
997 |
+
|
998 |
+
|
999 |
+
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family)
|
1000 |
|
1001 |
target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
1002 |
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
|
1003 |
+
|
1004 |
+
drug_library_upload_btn.upload(fn=lambda x: [
|
1005 |
+
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name])
|
1006 |
+
], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library])
|
1007 |
|
1008 |
|
1009 |
def example_fill(input_type):
|
1010 |
+
return {target_id: 'Q16539',
|
1011 |
+
target_gene: 'MAPK14',
|
1012 |
+
target_organism: 'Human',
|
|
|
|
|
|
|
|
|
|
|
1013 |
target_fasta: """
|
1014 |
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
|
1015 |
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
|
|
|
1021 |
"""}
|
1022 |
|
1023 |
|
1024 |
+
example_fasta.click(fn=example_fill, inputs=target_input_type,
|
1025 |
+
outputs=[target_id, target_gene, target_organism, target_fasta], show_progress=False)
|
|
|
1026 |
|
1027 |
|
1028 |
+
def screen_recommend_model(fasta, family, task):
|
1029 |
+
task = TASK_MAP[task]
|
1030 |
+
if task == 'DTI':
|
1031 |
+
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
1032 |
+
score = 'AUROC'
|
1033 |
+
elif task == 'DTA':
|
1034 |
+
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
|
1035 |
+
score = 'CI'
|
1036 |
+
|
1037 |
+
if fasta not in train['X2']:
|
1038 |
+
scenario = "Unseen target"
|
1039 |
+
else:
|
1040 |
+
scenario = "Seen target"
|
1041 |
+
benchmark_df = pd.read_csv('data/benchmarks/compound_screen.csv')
|
1042 |
+
|
1043 |
+
if task == 'General':
|
1044 |
+
filtered_df = benchmark_df[(benchmark_df[f'Task'] == task)
|
1045 |
+
& (benchmark_df['Target.family'] == 'All families reduced')
|
1046 |
+
& (benchmark_df['Scenario'] == 'Random split')
|
1047 |
+
& (benchmark_df['all'] == True)]
|
1048 |
+
else:
|
1049 |
+
filtered_df = benchmark_df[(benchmark_df['Task'] == task)
|
1050 |
+
& (benchmark_df['Target.family'] == family)
|
1051 |
+
& (benchmark_df['Scenario'] == scenario)
|
1052 |
+
& (benchmark_df['all'] == False)]
|
1053 |
+
row = filtered_df.loc[filtered_df[score].idxmax()]
|
1054 |
+
|
1055 |
+
return gr.Dropdown(value=row['preset'],
|
1056 |
+
info=f"Reason: {scenario} in the training dataset; we recommend the model "
|
1057 |
+
f"with the best {score} ({float(row[score]):.3f}) "
|
1058 |
+
f"in the {scenario.lower()} scenario on {family.lower()} family.")
|
1059 |
+
|
1060 |
+
|
1061 |
+
screen_preset_recommend_btn.click(fn=screen_recommend_model,
|
1062 |
+
inputs=[target_fasta, drug_screen_target_family, drug_screen_task],
|
1063 |
+
outputs=drug_screen_preset)
|
1064 |
+
|
1065 |
+
|
1066 |
+
# compound_smiles.focus(fn=wrap_text, inputs=compound_smiles, outputs=compound_smiles, show_progress=False)
|
1067 |
+
# compound_smiles.blur(fn=wrap_text, inputs=compound_smiles, outputs=compound_smiles, show_progress=False)
|
1068 |
+
|
1069 |
+
def compound_input_type_select(input_type):
|
1070 |
+
match input_type:
|
1071 |
+
case 'SMILES':
|
1072 |
+
return gr.Dropdown(info='Input an SMILES string or upload an SMI file')
|
1073 |
+
case 'SDF':
|
1074 |
+
return gr.Dropdown(info='Convert the first molecule in an SDF file to SMILES')
|
1075 |
+
|
1076 |
+
|
1077 |
+
compound_type.select(fn=compound_input_type_select,
|
1078 |
+
inputs=compound_type, outputs=compound_type, show_progress=False)
|
1079 |
+
|
1080 |
+
|
1081 |
+
def compound_upload_process(input_type, input_upload):
|
1082 |
+
match input_type:
|
1083 |
+
case 'SMILES':
|
1084 |
+
return input_upload.decode()
|
1085 |
+
case 'SDF':
|
1086 |
+
suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload))
|
1087 |
+
return Chem.MolToSmiles(next(suppl))
|
1088 |
+
|
1089 |
+
|
1090 |
+
compound_upload_btn.upload(fn=compound_upload_process,
|
1091 |
+
inputs=[compound_type, compound_upload_btn],
|
1092 |
+
outputs=compound_smiles)
|
1093 |
|
1094 |
+
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress=False)
|
1095 |
+
|
1096 |
+
target_library_upload_btn.upload(fn=lambda x: [
|
1097 |
+
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name])
|
1098 |
+
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library])
|
1099 |
+
|
1100 |
+
|
1101 |
+
def identify_recommend_model(smiles, task):
|
1102 |
+
if task == 'Drug-target interaction':
|
1103 |
+
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
|
1104 |
+
score = 'AUROC'
|
1105 |
+
elif task == 'Drug-target binding affinity':
|
1106 |
+
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
|
1107 |
+
score = 'CI'
|
1108 |
+
task = TASK_MAP[task]
|
1109 |
+
if smiles not in train['X1']:
|
1110 |
+
scenario = "Unseen drug"
|
1111 |
+
else:
|
1112 |
+
scenario = "Seen drug"
|
1113 |
+
benchmark_df = pd.read_csv('data/benchmarks/target_identification.csv')
|
1114 |
+
|
1115 |
+
filtered_df = benchmark_df[(benchmark_df['Task'] == task)
|
1116 |
+
& (benchmark_df['Scenario'] == scenario)]
|
1117 |
+
row = filtered_df.loc[filtered_df[score].idxmax()]
|
1118 |
+
|
1119 |
+
return gr.Dropdown(value=row['preset'],
|
1120 |
+
info=f"Reason: {scenario} in the training dataset; choosing the model"
|
1121 |
+
f"with the best {score} ({row[score]}) "
|
1122 |
+
f"in the {scenario.lower()} scenario.")
|
1123 |
+
|
1124 |
+
|
1125 |
+
identify_preset_recommend_btn.click(fn=identify_recommend_model,
|
1126 |
+
inputs=[compound_smiles, target_identify_task],
|
1127 |
+
outputs=drug_screen_preset)
|
1128 |
+
|
1129 |
+
|
1130 |
+
def drug_screen_validate(fasta, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1131 |
+
if not state:
|
1132 |
+
try:
|
1133 |
+
fasta = process_target_fasta(fasta)
|
1134 |
+
err = validate_seq_str(fasta, FASTA_PAT)
|
1135 |
+
if err:
|
1136 |
+
raise ValueError(f'Found error(s) in your target fasta input: {err}')
|
1137 |
+
if library in DRUG_LIBRARY_MAP.keys():
|
1138 |
+
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
|
1139 |
+
else:
|
1140 |
+
screen_df = pd.read_csv(library_upload)
|
1141 |
+
validate_columns(screen_df, ['X1'])
|
1142 |
+
|
1143 |
+
screen_df['X2'] = fasta
|
1144 |
+
|
1145 |
+
job_id = uuid4()
|
1146 |
+
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
|
1147 |
+
screen_df.to_csv(temp_file, index=False)
|
1148 |
+
if temp_file.is_file():
|
1149 |
+
return {screen_data_for_predict: str(temp_file),
|
1150 |
+
screen_flag: job_id,
|
1151 |
+
run_state: job_id}
|
1152 |
+
else:
|
1153 |
+
raise SystemError('Failed to create temporary files. Please try again later.')
|
1154 |
+
except Exception as e:
|
1155 |
+
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1156 |
+
return {screen_flag: False,
|
1157 |
+
run_state: False}
|
1158 |
else:
|
1159 |
gr.Warning('You have another prediction job '
|
1160 |
'(drug hit screening, target protein identification, or interation pair inference) '
|
1161 |
'running in the session right now. '
|
1162 |
'Please submit another job when your current job has finished.')
|
1163 |
+
return {screen_flag: False,
|
1164 |
+
run_state: state}
|
1165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1166 |
|
1167 |
+
def target_identify_validate(smiles, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1168 |
+
if not state:
|
1169 |
+
try:
|
1170 |
+
smiles = smiles.strip()
|
1171 |
+
err = validate_seq_str(smiles, SMILES_PAT)
|
1172 |
+
if err:
|
1173 |
+
raise ValueError(f'Found error(s) in your target fasta input: {err}')
|
1174 |
+
if library in TARGET_LIBRARY_MAP.keys():
|
1175 |
+
identify_df = pd.read_csv(TARGET_LIBRARY_MAP['target_library'])
|
1176 |
+
else:
|
1177 |
+
identify_df = pd.read_csv(library_upload)
|
1178 |
+
validate_columns(identify_df, ['X2'])
|
1179 |
+
|
1180 |
+
identify_df['X1'] = smiles
|
1181 |
+
|
1182 |
+
job_id = uuid4()
|
1183 |
+
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
|
1184 |
+
identify_df.to_csv(temp_file, index=False)
|
1185 |
+
if temp_file.is_file():
|
1186 |
+
return {identify_data_for_predict: str(temp_file),
|
1187 |
+
identify_flag: job_id,
|
1188 |
+
run_state: job_id}
|
1189 |
+
else:
|
1190 |
+
raise SystemError('Failed to create temporary files. Please try again later.')
|
1191 |
+
except Exception as e:
|
1192 |
+
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1193 |
+
return {identify_flag: False,
|
1194 |
+
run_state: False}
|
1195 |
else:
|
1196 |
gr.Warning('You have another prediction job '
|
1197 |
'(drug hit screening, target protein identification, or interation pair inference) '
|
1198 |
'running in the session right now. '
|
1199 |
'Please submit another job when your current job has finished.')
|
1200 |
+
return {identify_flag: False,
|
1201 |
+
run_state: state}
|
1202 |
+
# return {identify_flag: False}
|
1203 |
|
1204 |
|
1205 |
+
def pair_infer_validate(drug_target_pair_upload, state, progress=gr.Progress(track_tqdm=True)):
|
1206 |
+
if not state:
|
1207 |
+
try:
|
1208 |
+
df = pd.read_csv(drug_target_pair_upload)
|
1209 |
+
validate_columns(df, ['X1', 'X2'])
|
1210 |
+
|
1211 |
+
df['X1_ERR'] = df['X1'].swifter.progress_bar(desc="Validating SMILES...").apply(
|
1212 |
+
validate_seq_str, regex=SMILES_PAT)
|
1213 |
+
if not df['X1_ERR'].isna().all():
|
1214 |
+
raise ValueError(f"Encountered invalid SMILES:\n{df[~df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
|
1215 |
+
|
1216 |
+
df['X2_ERR'] = df['X2'].swifter.progress_bar(desc="Validating FASTA...").apply(
|
1217 |
+
validate_seq_str, regex=FASTA_PAT)
|
1218 |
+
if not df['X2_ERR'].isna().all():
|
1219 |
+
raise ValueError(f"Encountered invalid FASTA:\n{df[~df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
|
1220 |
+
|
1221 |
+
job_id = uuid4()
|
1222 |
+
return {infer_flag: job_id,
|
1223 |
+
run_state: job_id}
|
1224 |
+
except Exception as e:
|
1225 |
+
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
|
1226 |
+
return {infer_flag: False,
|
1227 |
+
run_state: False}
|
1228 |
|
1229 |
else:
|
1230 |
gr.Warning('You have another prediction job '
|
1231 |
'(drug hit screening, target protein identification, or interation pair inference) '
|
1232 |
'running in the session right now. '
|
1233 |
'Please submit another job when your current job has finished.')
|
1234 |
+
return {infer_flag: False,
|
1235 |
+
run_state: state}
|
1236 |
|
1237 |
|
1238 |
drug_screen_btn.click(
|
|
|
1248 |
drug_screen_target_family, screen_flag], # , drug_screen_email],
|
1249 |
outputs=[file_for_report, run_state]
|
1250 |
).then(
|
1251 |
+
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
|
1252 |
+
outputs=[screen_page, screen_waiting, tabs]
|
1253 |
)
|
1254 |
|
1255 |
target_identify_btn.click(
|
1256 |
fn=target_identify_validate,
|
1257 |
+
inputs=[compound_smiles, target_library, target_library_upload, run_state], # , drug_screen_email],
|
1258 |
outputs=[identify_data_for_predict, identify_flag, run_state]
|
1259 |
).then(
|
1260 |
+
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True), gr.Tabs(selected=3)],
|
1261 |
+
outputs=[identify_page, identify_waiting, tabs]
|
1262 |
).then(
|
1263 |
fn=submit_predict,
|
1264 |
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
|
1265 |
target_identify_target_family, identify_flag], # , target_identify_email],
|
1266 |
outputs=[file_for_report, run_state]
|
1267 |
).then(
|
1268 |
+
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
|
1269 |
+
outputs=[identify_page, identify_waiting, tabs]
|
1270 |
)
|
1271 |
|
1272 |
pair_infer_btn.click(
|
|
|
1288 |
|
1289 |
# TODO background job from these 3 pipelines to update file_for_report
|
1290 |
|
1291 |
+
file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[
|
1292 |
+
html_report,
|
1293 |
+
df_raw,
|
1294 |
+
# ranking_pie_chart
|
1295 |
+
])
|
1296 |
+
analyze_btn.click(fn=submit_report, inputs=[scores, filters], outputs=[
|
1297 |
+
html_report,
|
1298 |
+
df_raw,
|
1299 |
+
# ranking_pie_chart
|
1300 |
+
])
|
1301 |
+
|
1302 |
+
|
1303 |
+
def create_csv_raw_file(df, file_report):
|
1304 |
+
from datetime import datetime
|
1305 |
+
now = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
|
1306 |
+
filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv"
|
1307 |
+
df.to_csv(filename, index=False)
|
1308 |
+
return gr.File(filename, visible=True)
|
1309 |
+
|
1310 |
+
|
1311 |
+
def create_html_report_file(df, file_report):
|
1312 |
+
from datetime import datetime
|
1313 |
+
now = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
|
1314 |
+
filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv"
|
1315 |
+
create_html_report(df, filename)
|
1316 |
+
return gr.File(filename, visible=True)
|
1317 |
+
|
1318 |
|
1319 |
+
csv_generate.click(fn=create_csv_raw_file, inputs=[df_raw, file_for_report], outputs=csv_download_file)
|
1320 |
+
html_generate.click(fn=create_html_report_file, inputs=[df_raw, file_for_report], outputs=html_download_file)
|
1321 |
|
1322 |
# screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
|
1323 |
# every=5)
|
|
|
1338 |
# SCHEDULER.start()
|
1339 |
|
1340 |
demo.launch(
|
|
|
1341 |
show_api=False,
|
|
|
|
|
|
|
1342 |
)
|