Spaces:
Runtime error
Runtime error
Commit
·
caddeb0
1
Parent(s):
c39978f
update
Browse files
app.py
CHANGED
@@ -13,23 +13,57 @@ import os
|
|
13 |
from functools import lru_cache
|
14 |
import pandas as pd
|
15 |
from toolz import frequencies
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
17 |
token = os.environ["HUGGINGFACE_TOKEN"]
|
|
|
|
|
18 |
assert token
|
19 |
-
|
|
|
|
|
|
|
20 |
|
21 |
|
22 |
def get_hub_community_activity(user: str) -> List[Any]:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
return list(concat(all_data))
|
31 |
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def parse_date_time(date_time: str) -> datetime:
|
34 |
return datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%S.%fZ")
|
35 |
|
@@ -54,15 +88,18 @@ def parse_pr_data(data):
|
|
54 |
|
55 |
@cached(cache=TTLCache(maxsize=1000, ttl=timedelta(minutes=30), timer=datetime.now))
|
56 |
def update_data():
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
data = [parse_pr_data(d) for d in data]
|
62 |
update_df = pl.DataFrame(data)
|
63 |
df = pl.concat([previous_df, update_df]).unique()
|
64 |
if len(df) != len(previous_df):
|
65 |
-
Dataset(df.to_arrow()).push_to_hub("
|
66 |
return df
|
67 |
|
68 |
|
@@ -83,20 +120,13 @@ def get_pr_status(user: str):
|
|
83 |
|
84 |
|
85 |
def create_pie():
|
86 |
-
frequencies = get_pr_status(
|
87 |
df = pd.DataFrame({"status": frequencies.keys(), "number": frequencies.values()})
|
88 |
return px.pie(df, values="number", names="status", template="seaborn")
|
89 |
|
90 |
|
91 |
-
# def create_pie():
|
92 |
-
# df = update_data()
|
93 |
-
# df = df.filter(pl.col("isPullRequest") is True)
|
94 |
-
# df = df["status"].value_counts().to_pandas()
|
95 |
-
# return px.pie(df, values="counts", names="status", template="seaborn")
|
96 |
-
|
97 |
-
|
98 |
def group_status_by_pr_number():
|
99 |
-
all_data = get_hub_community_activity(
|
100 |
all_data = [parse_pr_data(d) for d in all_data]
|
101 |
return (
|
102 |
pl.DataFrame(all_data).groupby("status").agg(pl.mean("pr_number")).to_pandas()
|
@@ -104,7 +134,7 @@ def group_status_by_pr_number():
|
|
104 |
|
105 |
|
106 |
def plot_over_time():
|
107 |
-
all_data = get_hub_community_activity(
|
108 |
all_data = [parse_pr_data(d) for d in all_data]
|
109 |
df = pl.DataFrame(all_data).with_columns(pl.col("createdAt").cast(pl.Date))
|
110 |
df = df.pivot(
|
@@ -123,11 +153,11 @@ create_pie()
|
|
123 |
|
124 |
with gr.Blocks() as demo:
|
125 |
# frequencies = get_pr_status("librarian-bot")
|
126 |
-
gr.
|
127 |
-
gr.Markdown(f"Total prs and issues opened by
|
128 |
# gr.Markdown(f"Total PRs opened: {sum(frequencies.values())}")
|
129 |
with gr.Column():
|
130 |
-
gr.Markdown("## Pull requests
|
131 |
gr.Markdown(
|
132 |
"The below pie chart shows the percentage of pull requests made by"
|
133 |
" librarian bot that are open, closed or merged"
|
|
|
13 |
from functools import lru_cache
|
14 |
import pandas as pd
|
15 |
from toolz import frequencies
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
from typing import List, Any
|
18 |
+
from toolz import concat
|
19 |
+
import httpx
|
20 |
+
from tqdm.auto import tqdm
|
21 |
|
22 |
+
|
23 |
+
load_dotenv()
|
24 |
token = os.environ["HUGGINGFACE_TOKEN"]
|
25 |
+
user_agent = os.environ["USER_AGENT"]
|
26 |
+
user = os.environ["USER_TO_TRACK"]
|
27 |
assert token
|
28 |
+
assert user_agent
|
29 |
+
assert user
|
30 |
+
|
31 |
+
headers = {"user-agent": user_agent, "authorization": f"Bearer {token}"}
|
32 |
|
33 |
|
34 |
def get_hub_community_activity(user: str) -> List[Any]:
|
35 |
+
with tqdm() as pbar:
|
36 |
+
all_data = []
|
37 |
+
i = 1
|
38 |
+
while True:
|
39 |
+
r = httpx.get(
|
40 |
+
f"https://huggingface.co/api/recent-activity?limit=100&type=discussion&skip={i}&user={user}",
|
41 |
+
headers=headers,
|
42 |
+
)
|
43 |
+
activity = r.json()["recentActivity"]
|
44 |
+
if not activity:
|
45 |
+
break
|
46 |
+
all_data.append(activity)
|
47 |
+
if len(all_data) % 1000 == 0:
|
48 |
+
# print(f"Length of all_data: {len(all_data)}")
|
49 |
+
pbar.write(f"Length of all_data: {len(all_data)}")
|
50 |
+
i += 100
|
51 |
+
pbar.update(100)
|
52 |
+
|
53 |
return list(concat(all_data))
|
54 |
|
55 |
|
56 |
+
# def get_hub_community_activity(user: str) -> List[Any]:
|
57 |
+
# all_data = []
|
58 |
+
# for i in range(1, 2000, 100):
|
59 |
+
# r = httpx.get(
|
60 |
+
# f"https://huggingface.co/api/recent-activity?limit=100&type=discussion&skip={i}&user={user}"
|
61 |
+
# )
|
62 |
+
# activity = r.json()["recentActivity"]
|
63 |
+
# all_data.append(activity)
|
64 |
+
# return list(concat(all_data))
|
65 |
+
|
66 |
+
|
67 |
def parse_date_time(date_time: str) -> datetime:
|
68 |
return datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%S.%fZ")
|
69 |
|
|
|
88 |
|
89 |
@cached(cache=TTLCache(maxsize=1000, ttl=timedelta(minutes=30), timer=datetime.now))
|
90 |
def update_data():
|
91 |
+
try:
|
92 |
+
previous_df = pl.DataFrame(
|
93 |
+
load_dataset(f"librarian-bot/{user}-stats", split="train").data.table
|
94 |
+
)
|
95 |
+
except FileNotFoundError:
|
96 |
+
previous_df = pl.DataFrame()
|
97 |
+
data = get_hub_community_activity(user)
|
98 |
data = [parse_pr_data(d) for d in data]
|
99 |
update_df = pl.DataFrame(data)
|
100 |
df = pl.concat([previous_df, update_df]).unique()
|
101 |
if len(df) != len(previous_df):
|
102 |
+
Dataset(df.to_arrow()).push_to_hub(f"{user}-stats", token=token)
|
103 |
return df
|
104 |
|
105 |
|
|
|
120 |
|
121 |
|
122 |
def create_pie():
|
123 |
+
frequencies = get_pr_status(user)
|
124 |
df = pd.DataFrame({"status": frequencies.keys(), "number": frequencies.values()})
|
125 |
return px.pie(df, values="number", names="status", template="seaborn")
|
126 |
|
127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def group_status_by_pr_number():
|
129 |
+
all_data = get_hub_community_activity(user)
|
130 |
all_data = [parse_pr_data(d) for d in all_data]
|
131 |
return (
|
132 |
pl.DataFrame(all_data).groupby("status").agg(pl.mean("pr_number")).to_pandas()
|
|
|
134 |
|
135 |
|
136 |
def plot_over_time():
|
137 |
+
all_data = get_hub_community_activity(user)
|
138 |
all_data = [parse_pr_data(d) for d in all_data]
|
139 |
df = pl.DataFrame(all_data).with_columns(pl.col("createdAt").cast(pl.Date))
|
140 |
df = df.pivot(
|
|
|
153 |
|
154 |
with gr.Blocks() as demo:
|
155 |
# frequencies = get_pr_status("librarian-bot")
|
156 |
+
gr.Markdown(f"# {user} PR Stats")
|
157 |
+
gr.Markdown(f"Total prs and issues opened by {user}: {len(update_data()):,}")
|
158 |
# gr.Markdown(f"Total PRs opened: {sum(frequencies.values())}")
|
159 |
with gr.Column():
|
160 |
+
gr.Markdown("## Pull requests status")
|
161 |
gr.Markdown(
|
162 |
"The below pie chart shows the percentage of pull requests made by"
|
163 |
" librarian bot that are open, closed or merged"
|