from typing import Any, List import gradio as gr from toolz import concat import httpx import plotly.express as px import polars as pl from pathlib import Path from datasets import load_dataset from cachetools import TTLCache, cached from datetime import datetime, timedelta from datasets import Dataset import os from functools import lru_cache import pandas as pd from toolz import frequencies from dotenv import load_dotenv from typing import List, Any from toolz import concat import httpx from tqdm.auto import tqdm load_dotenv() token = os.environ["HUGGINGFACE_TOKEN"] user_agent = os.environ["USER_AGENT"] user = os.environ["USER_TO_TRACK"] assert token assert user_agent assert user headers = {"user-agent": user_agent, "authorization": f"Bearer {token}"} def get_hub_community_activity(user: str) -> List[Any]: with tqdm() as pbar: all_data = [] i = 1 while True: r = httpx.get( f"https://huggingface.co/api/recent-activity?limit=100&type=discussion&skip={i}&user={user}", headers=headers, ) activity = r.json()["recentActivity"] if not activity: break all_data.append(activity) if len(all_data) % 1000 == 0: # print(f"Length of all_data: {len(all_data)}") pbar.write(f"Length of all_data: {len(all_data)}") i += 100 pbar.update(100) return list(concat(all_data)) # def get_hub_community_activity(user: str) -> List[Any]: # all_data = [] # for i in range(1, 2000, 100): # r = httpx.get( # f"https://huggingface.co/api/recent-activity?limit=100&type=discussion&skip={i}&user={user}" # ) # activity = r.json()["recentActivity"] # all_data.append(activity) # return list(concat(all_data)) def parse_date_time(date_time: str) -> datetime: return datetime.strptime(date_time, "%Y-%m-%dT%H:%M:%S.%fZ") def parse_pr_data(data): data = data["discussionData"] createdAt = parse_date_time(data["createdAt"]) pr_number = data["num"] status = data["status"] repo_id = data["repo"]["name"] repo_type = data["repo"]["type"] isPullRequest = data["isPullRequest"] return { "createdAt": createdAt, "pr_number": pr_number, "status": status, "repo_id": repo_id, "type": repo_type, "isPullRequest": isPullRequest, } @cached(cache=TTLCache(maxsize=1000, ttl=timedelta(minutes=30), timer=datetime.now)) def update_data(): try: previous_df = pl.DataFrame( load_dataset(f"librarian-bot/{user}-stats", split="train").data.table ) except FileNotFoundError: previous_df = pl.DataFrame() data = get_hub_community_activity(user) data = [parse_pr_data(d) for d in data] update_df = pl.DataFrame(data) df = pl.concat([previous_df, update_df]).unique() if len(df) != len(previous_df): Dataset(df.to_arrow()).push_to_hub(f"{user}-stats", token=token) return df # def get_pr_status(): # df = update_data() # df = df.filter(pl.col("isPullRequest") is True) # return df.select(pl.col("status").value_counts()) # # return frequencies(x["status"] for x in pr_data) @lru_cache(maxsize=512) def get_pr_status(user: str): all_data = get_hub_community_activity(user) pr_data = ( x["discussionData"] for x in all_data if x["discussionData"]["isPullRequest"] ) return frequencies(x["status"] for x in pr_data) def create_pie(): frequencies = get_pr_status(user) df = pd.DataFrame({"status": frequencies.keys(), "number": frequencies.values()}) return px.pie(df, values="number", names="status", template="seaborn") def group_status_by_pr_number(): all_data = get_hub_community_activity(user) all_data = [parse_pr_data(d) for d in all_data] return ( pl.DataFrame(all_data).groupby("status").agg(pl.mean("pr_number")).to_pandas() ) def plot_over_time(): all_data = get_hub_community_activity(user) all_data = [parse_pr_data(d) for d in all_data] df = pl.DataFrame(all_data).with_columns(pl.col("createdAt").cast(pl.Date)) df = df.pivot( values=["status"], index=["createdAt"], columns=["status"], aggregate_function="count", ) df = df.fill_null(0) df = df.with_columns(pl.sum(["open", "closed", "merged"])).sort("createdAt") df = df.to_pandas().set_index("createdAt").cumsum() return px.line(df, x=df.index, y=[c for c in df.columns if c != "sum"]) create_pie() with gr.Blocks() as demo: # frequencies = get_pr_status("librarian-bot") gr.Markdown(f"# {user} PR Stats") gr.Markdown(f"Total prs and issues opened by {user}: {len(update_data()):,}") # gr.Markdown(f"Total PRs opened: {sum(frequencies.values())}") with gr.Column(): gr.Markdown("## Pull requests status") gr.Markdown( "The below pie chart shows the percentage of pull requests made by" " librarian bot that are open, closed or merged" ) gr.Plot(create_pie()) with gr.Column(): gr.Markdown("Pull requests opened, closed and merged over time (cumulative)") gr.Plot(plot_over_time()) with gr.Column(): gr.Markdown("## Pull requests status by PR number") gr.DataFrame(group_status_by_pr_number()) demo.launch(debug=True)