Spaces:
Runtime error
Runtime error
File size: 17,565 Bytes
703dffd 04c52df 703dffd a518f79 04c52df 703dffd 04c52df 703dffd a4a37cc 04c52df a4a37cc 04c52df a4a37cc f1a6dea 04c52df 703dffd 04c52df 703dffd 04c52df 703dffd 04c52df 703dffd 04c52df 703dffd a518f79 703dffd 263c06c 2390730 04c52df 263c06c 703dffd f1a6dea 703dffd f1a6dea 04c52df 703dffd a4a37cc f1a6dea 04c52df 703dffd 04c52df 703dffd 04c52df 1c8f379 04c52df f756530 04c52df 1c8f379 04c52df 703dffd 04c52df a4a37cc 04c52df a4a37cc 04c52df a4a37cc 04c52df a4a37cc 04c52df f756530 04c52df a4a37cc 703dffd 04c52df 703dffd f70c67c 703dffd 04c52df a4a37cc 703dffd a4a37cc 04c52df b54cb8f 04c52df 00785bd 703dffd 04c52df 504af34 703dffd 04c52df a4a37cc 04c52df a4a37cc 04c52df a518f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import gradio as gr
from huggingface_hub import list_spaces, list_models, list_datasets
from cachetools import TTLCache, cached
from toolz import groupby, valmap
import platform
from enum import Enum
is_macos = platform.system() == "Darwin"
LIMIT = 1_000_000 if is_macos else None
NONE_AUTHOR = "HuggingFace Team" # TODO deal with this
class HubRepoType(Enum):
MODEL = "model"
DATASET = "dataset"
SPACE = "space"
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def get_spaces(): # β
return list(list_spaces(full=True, limit=LIMIT))
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def get_models():
return list(iter(list_models(full=True, limit=LIMIT)))
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def get_datasets():
return list(iter(list_datasets(full=True, limit=LIMIT)))
get_spaces() # to warm up the cache
get_models() # to warm up the cache
get_datasets() # to warm up the cache
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def valid_dataset_ids():
return {dataset.id for dataset in get_datasets()}
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def valid_model_ids():
return {model.id for model in get_models()}
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def valid_space_ids():
return {space.id for space in get_spaces()}
VALID_DATASET_IDS = valid_dataset_ids()
VALID_MODEL_IDS = valid_model_ids()
VALID_SPACE_IDS = valid_space_ids()
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def create_space_to_like_dict():
spaces = get_spaces()
return {space.id: space.likes for space in spaces}
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def create_org_to_space_like_dict():
spaces = get_spaces()
grouped = groupby(lambda x: x.author, spaces)
return valmap(lambda x: sum(s.likes for s in x), grouped)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def create_model_to_like_dict(metric_kind):
models = get_models()
if metric_kind == "likes":
return {model.id: model.likes for model in models}
if metric_kind == "downloads":
return {model.id: model.downloads for model in models}
raise ValueError(f"Unsupported metric_kind: {metric_kind}")
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def create_org_to_model_metrics(metric_kind="likes"):
models = get_models()
# remove authors who are None
models = [model for model in models if model.author is not None]
grouped = groupby(lambda x: x.author, models)
if metric_kind:
return valmap(lambda x: sum(s.likes for s in x), grouped)
else:
return valmap(lambda x: sum(s.downloads for s in x), grouped)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def create_dataset_to_like_dict(metric_kind="likes"):
datasets = get_datasets()
if metric_kind == "likes":
return {dataset.id: dataset.likes for dataset in datasets}
if metric_kind == "downloads":
return {dataset.id: dataset.downloads for dataset in datasets}
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def create_org_to_dataset_metrics(metric_kind="likes"):
datasets = get_datasets()
# remove authors who are None
datasets = [dataset for dataset in datasets if dataset.author is not None]
grouped = groupby(lambda x: x.author, datasets)
if metric_kind:
return valmap(lambda x: sum(s.likes for s in x), grouped)
else:
return valmap(lambda x: sum(s.downloads for s in x), grouped)
def relative_rank(my_dict, target_key, filter_zero=False):
if filter_zero:
my_dict = {k: v for k, v in my_dict.items() if v != 0}
if target_key not in my_dict:
raise gr.Error(f"'{target_key}' not found please check the ID and try again.")
sorted_items = sorted(my_dict.items(), key=lambda item: item[1], reverse=True)
position = [key for key, _ in sorted_items].index(target_key)
num_lower = len(sorted_items) - position - 1
num_higher = position
return {
"rank": (num_higher + 1) / len(my_dict) * 100,
"num_higher": num_higher,
"num_lower": num_lower,
"value": my_dict[target_key],
"position": num_higher + 1,
}
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def relative_rank_for_space(space_id, filter_zero=False):
space_to_like_dict = create_space_to_like_dict()
return relative_rank(space_to_like_dict, space_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def relative_rank_for_model(model_id, metric_kind="likes", filter_zero=False):
model_to_like_dict = create_model_to_like_dict(metric_kind)
return relative_rank(model_to_like_dict, model_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def relative_rank_for_dataset(dataset_id, metric_kind="likes", filter_zero=False):
dataset_to_like_dict = create_dataset_to_like_dict(metric_kind)
return relative_rank(dataset_to_like_dict, dataset_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def relative_space_rank_for_org(org_id, filter_zero=False):
org_to_like_dict = create_org_to_space_like_dict()
return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def relative_model_rank_for_org(org_id, metric_kind="likes", filter_zero=False):
org_to_like_dict = create_org_to_model_metrics(metric_kind)
return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def relative_dataset_rank_for_org(org_id, metric_kind="likes", filter_zero=False):
org_to_like_dict = create_org_to_dataset_metrics(metric_kind)
return relative_rank(org_to_like_dict, org_id, filter_zero=filter_zero)
# @cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
# def rank_space(space_id):
# return relative_rank_for_space(space_id)
def rank_space_and_org(space_or_org_id, kind, filter_zero):
filter_zero = filter_zero == "yes"
split_length = len(space_or_org_id.split("/"))
# Logic for split_length == 2
if split_length == 2:
return _rank_single_repo(space_or_org_id, kind, filter_zero)
# Handle kind-specific logic for split_length == 1
if split_length == 1:
valid_ids = {"model": VALID_MODEL_IDS, "dataset": VALID_DATASET_IDS}
if kind in valid_ids and space_or_org_id in valid_ids[kind]:
return _rank_single_repo(space_or_org_id, kind, filter_zero)
else:
return _rank_by_org(space_or_org_id, kind, filter_zero)
# If no conditions match, handle unexpected cases (optional)
raise ValueError(
f"Unexpected combination of space_or_org_id '{space_or_org_id}' and kind"
f" '{kind}'"
)
def _rank_by_org(space_or_org_id, kind, filter_zero):
if kind == "space":
org_rank = relative_space_rank_for_org(space_or_org_id, filter_zero=filter_zero)
elif kind == "model":
org_rank = relative_model_rank_for_org(space_or_org_id, filter_zero=filter_zero)
elif kind == "dataset":
org_rank = relative_dataset_rank_for_org(
space_or_org_id, filter_zero=filter_zero
)
result = (
f"## βοΈ Org/User {kind.title()} Likes Rankings βοΈ\n"
+ f"Here are the rankings for the org/user across all of their {kind}s \n"
)
result += f"""- You have {org_rank['value']:,} likes for this org/user.\n"""
result += f"""- Your org/user is ranked {org_rank['position']:,}\n"""
result += f"""- You have {org_rank['num_higher']:,} orgs/users above and {org_rank['num_lower']:,} orgs/users below in the ranking of {kind} likes \n\n"""
result += f"""- Organization or user [{space_or_org_id}](https://huggingface.co/{space_or_org_id}) is ranked in the top {org_rank['rank']:.2f}% \n\n"""
if kind == "space":
result += f"""You can find all your Spaces sorted by likes [here](https://huggingface.co/{space_or_org_id}?sort_spaces=likes#spaces)\n"""
if kind == "model":
result += f"""You can find all your Models sorted by likes [here](https://huggingface.co/{space_or_org_id}?sort_models=likes#models)\n"""
if kind == "dataset":
result += f"""You can find all your Datasets sorted by likes [here](https://huggingface.co/{space_or_org_id}?sort_datasets=likes#datasets)\n"""
return _create_footer_message(result, kind)
def _rank_single_repo(space_or_org_id, kind, filter_zero):
if kind == "space":
repo_rank = relative_rank_for_space(space_or_org_id, filter_zero=filter_zero)
elif kind == "model":
repo_rank = relative_rank_for_model(space_or_org_id, filter_zero=filter_zero)
elif kind == "dataset":
repo_rank = relative_rank_for_dataset(space_or_org_id, filter_zero=filter_zero)
result = f"## βοΈ {kind.title()} Likes Rankings βοΈ\n"
result += f"""Here are the rankings by likes for [`{space_or_org_id}`](https://huggingface.co/spaces/{space_or_org_id}) across all {kind}s \n"""
result += f"""- You have {repo_rank['value']:,} likes for this {kind}.\n"""
result += f"""- Your {kind} is ranked {repo_rank['position']:,}.\n"""
if kind == "space":
result += f"""- Space [{space_or_org_id}](https://huggingface.co/spaces/{space_or_org_id}) is ranked {repo_rank['rank']:.2f}%\n"""
if kind == "model":
result += f"""- Model [{space_or_org_id}](https://huggingface.co/{space_or_org_id}) is ranked {repo_rank['rank']:.2f}%\n"""
if kind == "dataset":
result += f"""- Dataset [{space_or_org_id}](https://huggingface.co/dataset/{space_or_org_id}) is ranked {repo_rank['rank']:.2f}%\n"""
result += f"""- You have {repo_rank['num_higher']:,} {kind}s above and {repo_rank['num_lower']:,} {kind}s below in the ranking of {kind}s likes\n\n"""
return _create_footer_message(result, kind)
def _create_footer_message(result, kind):
result += """### β¨ Remember likes aren't everything!β¨\n"""
if kind == "space":
result += """Some Spaces go very viral whilst other Spaces may be very useful for a smaller audience. If you think your Space is useful, please add it to this [thread](https://huggingface.co/spaces/librarian-bots/ranker/discussions/3) of awesome Spaces.
We'll look out for awesome Spaces added to this thread to promote more widely!"""
return result
def get_top_n_orgs_and_users_spaces(top_n=100):
# gr.Info("Updating leaderboard, this may take a few seconds...")
orgs_to_likes = create_org_to_space_like_dict()
sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True)
sorted_items = sorted_items[:top_n]
return sorted_items
def get_top_n_orgs_and_users_models(metric, top_n=100):
# gr.Info("Updating leaderboard, this may take a few seconds...")
orgs_to_likes = create_org_to_model_metrics(metric)
sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True)
sorted_items = sorted_items[:top_n]
return sorted_items
def get_top_n_orgs_and_users_datasets(metric, top_n=100):
# gr.Info("Updating leaderboard, this may take a few seconds...")
orgs_to_likes = create_org_to_dataset_metrics(metric)
sorted_items = sorted(orgs_to_likes.items(), key=lambda item: item[1], reverse=True)
sorted_items = sorted_items[:top_n]
return sorted_items
def plot_top_n_orgs_and_users(kind, metric="likes", top_n=100):
if kind == "space":
top_n = get_top_n_orgs_and_users_spaces(top_n)
header = """## π
Top 100 Orgs and Users by Space Likes π
"""
body = "".join(
f"\n{i+1}. [{org}](https://huggingface.co/{org}) with {likes:,} likes"
for i, (org, likes) in enumerate(top_n)
)
return header + body
elif kind == "model":
top_n = get_top_n_orgs_and_users_models(metric, top_n=top_n)
header = """## π
Top 100 Orgs and Users by Model Likes π
"""
body = "".join(
f"\n{i+1}. [{org}](https://huggingface.co/{org}) with {likes:,} likes"
for i, (org, likes) in enumerate(top_n)
)
return header + body
elif kind == "dataset":
top_n = get_top_n_orgs_and_users_datasets(metric, top_n=top_n)
header = """## π
Top 100 Orgs and Users by Dataset Likes π
"""
body = "".join(
f"\n{i+1}. [{org}](https://huggingface.co/{org}) with {likes:,} likes"
for i, (org, likes) in enumerate(top_n)
)
return header + body
def get_top_n_spaces(top_n=100):
# gr.Info("Updating leaderboard, this may take a few seconds...")
space_to_likes = create_space_to_like_dict()
sorted_items = sorted(
space_to_likes.items(), key=lambda item: item[1], reverse=True
)
sorted_items = sorted_items[:top_n]
return sorted_items
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def get_top_n_models(metric_kind, top_n=100):
# gr.Info("Updating leaderboard, this may take a few seconds...")
model_to_likes = create_model_to_like_dict(metric_kind)
sorted_items = sorted(
model_to_likes.items(), key=lambda item: item[1], reverse=True
)
sorted_items = sorted_items[:top_n]
return sorted_items
@cached(cache=TTLCache(maxsize=100, ttl=60 * 30))
def get_top_n_datasets(metric, top_n=100):
# gr.Info("Updating leaderboard, this may take a few seconds...")
dataset_to_likes = create_dataset_to_like_dict(metric)
sorted_items = sorted(
dataset_to_likes.items(), key=lambda item: item[1], reverse=True
)
sorted_items = sorted_items[:top_n]
return sorted_items
def _plot_top_n_hub_repos(kind: HubRepoType, metric="likes", top_n=100):
if kind == HubRepoType.SPACE:
top_n = get_top_n_spaces(top_n)
header = """## π
Top 100 Space repositories by Likes π
"""
body = "".join(
f"\n{i+1}. [{space}](https://huggingface.co/spaces/{space}) with"
f" {likes:,} likes"
for i, (space, likes) in enumerate(top_n)
)
return header + body
elif kind == HubRepoType.MODEL:
top_n = get_top_n_models(metric, top_n)
header = """## π
Top 100 Model repositories by Likes π
"""
body = "".join(
f"\n{i+1}. [{model}](https://huggingface.co/{model}) with"
f" {likes:,} likes"
for i, (model, likes) in enumerate(top_n)
)
return header + body
elif kind == HubRepoType.DATASET:
top_n = get_top_n_datasets(metric, top_n)
header = """## π
Top 100 Dataset repositories by Likes π
"""
body = "".join(
f"\n{i+1}. [{dataset}](https://huggingface.co/dataset/{dataset}) with"
f" {likes:,} likes"
for i, (dataset, likes) in enumerate(top_n)
)
return header + body
def plot_top_n_hub_repos(kind, metric_kind="likes", top_n=100):
if kind == "space":
return _plot_top_n_hub_repos(HubRepoType.SPACE, top_n)
elif kind == "model":
return _plot_top_n_hub_repos(HubRepoType.MODEL, metric=metric_kind, top_n=top_n)
elif kind == "dataset":
return _plot_top_n_hub_repos(
HubRepoType.DATASET, metric=metric_kind, top_n=top_n
)
with gr.Blocks() as demo:
gr.HTML("<h1 style='text-align: center;'> 🏆 HuggyRanker 🏆 </h1>")
gr.HTML(
"""<p style='text-align: center;'>Rank a single repository or all of the repositories created by an organization or user by likes</p>"""
)
gr.HTML(
"""<p style="text-align: center;"><i>Remember likes aren't everything!</i></p>"""
)
gr.Markdown(
"""## Rank Specific Hub repositories or rank an organization or user by likes
Provide this app with a Hub ID e.g. `librarian-bots/ranker` or a Username/Organization name e.g. `librarian-bots` to rank by likes."""
)
with gr.Row():
space_id = gr.Textbox(
"librarian-bots", max_lines=1, label="Space or user/organization ID"
)
filter_zero_likes = gr.Radio(
choices=["no", "yes"],
label="Filter out repositories with 0 likes in the ranking?",
value="yes",
)
repo_type = gr.Radio(
choices=["space", "model", "dataset"],
label="Type of repo",
value="space",
interactive=True,
)
run_btn = gr.Button("Show ranking for this Space or org/user!", label="Rank Space")
result = gr.Markdown()
run_btn.click(
rank_space_and_org,
inputs=[space_id, repo_type, filter_zero_likes],
outputs=result,
)
gr.Markdown("## Leaderboard of Top 100 Spaces and Orgs/Users by Likes")
gr.Markdown(
"""The leaderboard is updated every 30 minutes.
Choose the type of repo to rank by likes and click the button to show the leaderboard."""
)
show_refresh_btn = gr.Button("Show/refresh Leaderboard", label="Refresh")
with gr.Row():
with gr.Accordion("Show rankings for Orgs and Users", open=False):
org_user_ranking = gr.Markdown()
show_refresh_btn.click(
plot_top_n_orgs_and_users, inputs=[repo_type], outputs=org_user_ranking
)
with gr.Accordion("Show rankings for individual repositories", open=False):
repo_level_ranking = gr.Markdown()
show_refresh_btn.click(
plot_top_n_hub_repos, inputs=[repo_type], outputs=repo_level_ranking
)
demo.queue(concurrency_count=4).launch()
|