Spaces:
Runtime error
Runtime error
File size: 9,662 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import argparse
from datetime import datetime
import random
import os
import time
import multiprocessing
# Set multiprocessing start method to 'spawn' to avoid CUDA initialization issues in forked processes
multiprocessing.set_start_method('spawn', force=True)
from tqdm.auto import tqdm # Progress bar
import numpy as np
from omegaconf import OmegaConf
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import SequentialLR, LambdaLR, CosineAnnealingLR, ExponentialLR # Importing CosineAnnealingLR scheduler
import torch.nn.functional as F
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed # Removed get_scheduler import
from peft import get_peft_model, LoraConfig
from modeling import VMemModel
from modeling.modules.autoencoder import AutoEncoder
from modeling.sampling import DDPMDiscretization, DiscreteDenoiser, create_samplers
from modeling.modules.conditioner import CLIPConditioner
from utils.training_utils import DiffusionTrainer, load_pretrained_model
from data.dataset import RealEstatePoseImageSevaDataset
# set random seed for reproducibility
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)
def parse_args():
parser = argparse.ArgumentParser(description='Train a model')
parser.add_argument('--config', type=str, default="", required=True, help='Path to the config file')
args = parser.parse_args()
return args
def generate_current_datetime():
return datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
def prepare_model(unet, config):
assert isinstance(unet, VMemModel), "unet should be an instance of VMemModel"
if config.training.lora_flag:
target_modules = []
for name, param in unet.named_parameters():
# # if ("temporal" in name or "transformer" in name) and "norm" not in name:
print(name)
if ("transformer" in name or "emb" in name or "layers" in name) \
and "norm" not in name and "in_layers.0" not in name and "out_layers.0" not in name:
# print(name)
name = name.replace(".weight", "")
name = name.replace(".bias", "")
if name not in target_modules:
target_modules.append(str(name))
lora_config = LoraConfig(
r=config.training.lora_r,
lora_alpha=config.training.lora_alpha,
target_modules=target_modules,
lora_dropout=config.training.lora_dropout,
# bias="none",
)
lora_config.target_modules = target_modules
unet = get_peft_model(unet, lora_config)
# for name, param in unet.named_parameters():
# if "camera" in name or "control" in name or "context" in name or "epipolar" in name or "appearance" in name:
# print(name)
# param.requires_grad = True
unet.print_trainable_parameters()
else:
for name, param in unet.named_parameters():
param.requires_grad = True
print("trainable parameters percentage: ", np.sum([p.numel() for p in unet.parameters() if p.requires_grad])/np.sum([p.numel() for p in unet.parameters()]))
return unet
def main():
args = parse_args()
config_path = args.config
config = OmegaConf.load(config_path)
# Load the configuration
num_epochs = config.training.num_epochs
batch_size = config.training.batch_size
learning_rate = config.training.learning_rate
gradient_accumulation_steps = config.training.gradient_accumulation_steps
num_workers = config.training.num_workers
warmup_epochs = config.training.warmup_epochs
max_grad_norm = config.training.max_grad_norm
validation_interval = config.training.validation_interval
visualization_flag = config.training.visualization_flag
visualize_every = config.training.visualize_every
random_seed = config.training.random_seed
save_flag = config.training.save_flag
use_wandb = config.training.use_wandb
samples_dir = config.training.samples_dir
weights_save_dir = config.training.weights_save_dir
resume = config.training.resume
exp_id = generate_current_datetime()
if visualization_flag:
run_visualization_dir = f"{samples_dir}/{exp_id}"
os.makedirs(run_visualization_dir, exist_ok=True)
else:
run_visualization_dir = None
if save_flag:
run_weights_save_dir = f"{weights_save_dir}/{exp_id}"
os.makedirs(run_weights_save_dir, exist_ok=True)
else:
run_weights_save_dir = None
accelerator = Accelerator(
mixed_precision="fp16",
gradient_accumulation_steps=gradient_accumulation_steps,
kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=False)],
)
num_gpus = accelerator.num_processes
if random_seed is not None:
set_seed(random_seed, device_specific=True)
device = accelerator.device
model = load_pretrained_model(cache_dir=config.model.cache_dir, device=device)
model = prepare_model(model, config)
if resume:
model.load_state_dict(torch.load(resume, map_location='cpu'), strict=False)
torch.cuda.empty_cache()
# model = model.to(device)
# time.sleep(100*3600)
train_dataset = RealEstatePoseImageSevaDataset(rgb_data_dir=config.dataset.realestate10k.rgb_data_dir,
meta_info_dir=config.dataset.realestate10k.meta_info_dir,
num_sample_per_episode=config.dataset.realestate10k.num_sample_per_episode,
mode='train')
val_dataset = RealEstatePoseImageSevaDataset(rgb_data_dir=config.dataset.realestate10k.rgb_data_dir,
meta_info_dir=config.dataset.realestate10k.meta_info_dir,
num_sample_per_episode=config.dataset.realestate10k.val_num_sample_per_episode,
mode='test')
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, multiprocessing_context='spawn')
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, multiprocessing_context='spawn')
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=config.training.weight_decay)
train_steps_per_epoch = len(train_dataloader)
total_train_steps = num_epochs * train_steps_per_epoch
warmup_steps = warmup_epochs * train_steps_per_epoch
lr_scheduler = CosineAnnealingLR(
optimizer, T_max=total_train_steps - warmup_steps, eta_min=0
)
# lr_scheduler = ExponentialLR(optimizer, gamma=gamma)
if warmup_epochs > 0:
def warmup_lambda(current_step):
return float(current_step) / float(max(1, warmup_steps))
warmup_scheduler = LambdaLR(optimizer, lr_lambda=warmup_lambda)
# Combine the schedulers using SequentialLR
lr_scheduler = SequentialLR(
optimizer, schedulers=[warmup_scheduler, lr_scheduler], milestones=[warmup_steps]
)
vae = AutoEncoder(chunk_size=1).to(device)
vae.eval()
conditioner = CLIPConditioner().to(device)
discretization = DDPMDiscretization()
denoiser = DiscreteDenoiser(discretization=discretization, num_idx=1000, device=device)
sampler = create_samplers(guider_types=config.training.guider_types,
discretization=discretization,
num_frames=config.model.num_frames,
num_steps=config.training.inference_num_steps,
cfg_min=config.training.cfg_min,
device=device)
(model,
vae,
train_dataloader,
val_dataloader,
optimizer,
lr_scheduler) = accelerator.prepare(
model,
vae,
train_dataloader,
val_dataloader,
optimizer,
lr_scheduler,
)
trainer = DiffusionTrainer(network=model,
ae=vae,
conditioner=conditioner,
denoiser=denoiser,
sampler=sampler,
discretization=discretization,
cfg=config.training.cfg,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
ema_decay=config.training.ema_decay,
device=device,
accelerator=accelerator,
max_grad_norm=max_grad_norm,
save_flag=save_flag,
visualize_flag=visualization_flag)
trainer.train(train_dataloader,
num_epochs,
unconditional_prob=config.training.uncond_prob,
log_every=10,
validation_dataloader=val_dataloader,
validation_interval=validation_interval,
save_dir=run_weights_save_dir,
save_interval=config.training.save_every,
visualize_every=visualize_every,
visualize_dir=run_visualization_dir,
use_wandb=use_wandb)
if __name__ == "__main__":
main()
|