File size: 9,662 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
from datetime import datetime
import random
import os
import time
import multiprocessing

# Set multiprocessing start method to 'spawn' to avoid CUDA initialization issues in forked processes
multiprocessing.set_start_method('spawn', force=True)


from tqdm.auto import tqdm  # Progress bar
import numpy as np
from omegaconf import OmegaConf

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import SequentialLR, LambdaLR, CosineAnnealingLR, ExponentialLR # Importing CosineAnnealingLR scheduler
import torch.nn.functional as F



from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.utils import set_seed  # Removed get_scheduler import

from peft import get_peft_model, LoraConfig

from modeling import VMemModel
from modeling.modules.autoencoder import AutoEncoder
from modeling.sampling import DDPMDiscretization, DiscreteDenoiser, create_samplers
from modeling.modules.conditioner import CLIPConditioner

from utils.training_utils import  DiffusionTrainer, load_pretrained_model
from data.dataset import RealEstatePoseImageSevaDataset




# set random seed for reproducibility
torch.manual_seed(42)
random.seed(42)
np.random.seed(42)



def parse_args():
    parser = argparse.ArgumentParser(description='Train a model')
    parser.add_argument('--config', type=str, default="", required=True, help='Path to the config file')
    args = parser.parse_args()
    return args


def generate_current_datetime():
    return datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

def prepare_model(unet, config):
    assert isinstance(unet, VMemModel), "unet should be an instance of VMemModel"
    if config.training.lora_flag:
        target_modules = []
        for name, param in unet.named_parameters():
            # # if ("temporal" in name or "transformer" in name) and "norm" not in name:
            print(name)
            if ("transformer" in name or "emb" in name or "layers" in name) \
                and "norm" not in name and "in_layers.0" not in name and "out_layers.0" not in name:
                # print(name)
                name = name.replace(".weight", "")
                name = name.replace(".bias", "")
                if name not in target_modules:
                    target_modules.append(str(name))
        
        lora_config = LoraConfig(   
            r=config.training.lora_r,
            lora_alpha=config.training.lora_alpha,
            target_modules=target_modules,
            lora_dropout=config.training.lora_dropout,
            # bias="none",
        )
        lora_config.target_modules = target_modules

        unet = get_peft_model(unet, lora_config)
        # for name, param in unet.named_parameters():
        #     if "camera" in name or "control" in name or "context" in name or "epipolar" in name or "appearance" in name:
        #         print(name)
        #         param.requires_grad = True
   
        unet.print_trainable_parameters()
    else:
        for name, param in unet.named_parameters():
            param.requires_grad = True
         
        print("trainable parameters percentage: ", np.sum([p.numel() for p in unet.parameters() if p.requires_grad])/np.sum([p.numel() for p in unet.parameters()]))
    return unet


    
 
def main():
    args = parse_args()
    config_path = args.config
    config = OmegaConf.load(config_path)

    # Load the configuration
    num_epochs = config.training.num_epochs
    batch_size = config.training.batch_size
    learning_rate = config.training.learning_rate
    gradient_accumulation_steps = config.training.gradient_accumulation_steps
    num_workers = config.training.num_workers
    warmup_epochs = config.training.warmup_epochs
    max_grad_norm = config.training.max_grad_norm
    validation_interval = config.training.validation_interval
    visualization_flag = config.training.visualization_flag
    visualize_every = config.training.visualize_every
    random_seed = config.training.random_seed
    save_flag = config.training.save_flag
    use_wandb = config.training.use_wandb
    samples_dir = config.training.samples_dir


    
    weights_save_dir = config.training.weights_save_dir
    

    resume = config.training.resume



    exp_id = generate_current_datetime()
    if visualization_flag:
        run_visualization_dir = f"{samples_dir}/{exp_id}"
        os.makedirs(run_visualization_dir, exist_ok=True)
    else:
        run_visualization_dir = None
    if save_flag:
        run_weights_save_dir = f"{weights_save_dir}/{exp_id}"
        os.makedirs(run_weights_save_dir, exist_ok=True)
    else:
        run_weights_save_dir = None


    accelerator = Accelerator(
        mixed_precision="fp16",
        gradient_accumulation_steps=gradient_accumulation_steps,
        kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=False)],
    )
    num_gpus = accelerator.num_processes 

    if random_seed is not None:
        set_seed(random_seed, device_specific=True)
    device = accelerator.device

    

    model = load_pretrained_model(cache_dir=config.model.cache_dir, device=device)


    model = prepare_model(model, config)
    if resume:
        model.load_state_dict(torch.load(resume, map_location='cpu'), strict=False)
        torch.cuda.empty_cache()
    
    # model = model.to(device)


    # time.sleep(100*3600)

      

    train_dataset = RealEstatePoseImageSevaDataset(rgb_data_dir=config.dataset.realestate10k.rgb_data_dir, 
                                                    meta_info_dir=config.dataset.realestate10k.meta_info_dir,
                                                    num_sample_per_episode=config.dataset.realestate10k.num_sample_per_episode,
                                                    mode='train')
    val_dataset = RealEstatePoseImageSevaDataset(rgb_data_dir=config.dataset.realestate10k.rgb_data_dir, 
                                                    meta_info_dir=config.dataset.realestate10k.meta_info_dir, 
                                                    num_sample_per_episode=config.dataset.realestate10k.val_num_sample_per_episode,
                                                    mode='test')

        
    train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, multiprocessing_context='spawn')
    val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers, multiprocessing_context='spawn')
    
    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=config.training.weight_decay)
    train_steps_per_epoch = len(train_dataloader)
    total_train_steps = num_epochs * train_steps_per_epoch 
    warmup_steps = warmup_epochs * train_steps_per_epoch
    
    lr_scheduler = CosineAnnealingLR(
        optimizer, T_max=total_train_steps - warmup_steps, eta_min=0
    )
    
    # lr_scheduler = ExponentialLR(optimizer, gamma=gamma)
    if warmup_epochs > 0:
        def warmup_lambda(current_step):
            return float(current_step) / float(max(1, warmup_steps))
        warmup_scheduler = LambdaLR(optimizer, lr_lambda=warmup_lambda)


        # Combine the schedulers using SequentialLR
        lr_scheduler = SequentialLR(
            optimizer, schedulers=[warmup_scheduler, lr_scheduler], milestones=[warmup_steps]
        )
    vae = AutoEncoder(chunk_size=1).to(device)
    vae.eval()
    conditioner = CLIPConditioner().to(device)
    discretization = DDPMDiscretization()
    denoiser = DiscreteDenoiser(discretization=discretization, num_idx=1000, device=device)
    sampler = create_samplers(guider_types=config.training.guider_types,
                              discretization=discretization,
                              num_frames=config.model.num_frames,
                              num_steps=config.training.inference_num_steps,
                              cfg_min=config.training.cfg_min,
                              device=device)


    (model,
    vae,
    train_dataloader,
    val_dataloader,
    optimizer,
    lr_scheduler) = accelerator.prepare(
        model,
        vae,
        train_dataloader,
        val_dataloader,
        optimizer,
        lr_scheduler,
    )

    
    trainer = DiffusionTrainer(network=model,
                               ae=vae,
                               conditioner=conditioner,
                               denoiser=denoiser,
                               sampler=sampler,
                               discretization=discretization,
                               cfg=config.training.cfg,
                               optimizer=optimizer,
                               lr_scheduler=lr_scheduler,
                               ema_decay=config.training.ema_decay,
                               device=device,
                               accelerator=accelerator,
                               max_grad_norm=max_grad_norm,
                               save_flag=save_flag,
                               visualize_flag=visualization_flag)



    trainer.train(train_dataloader, 
                  num_epochs,
                  unconditional_prob=config.training.uncond_prob,
                  log_every=10, 
                  validation_dataloader=val_dataloader, 
                  validation_interval=validation_interval, 
                  save_dir=run_weights_save_dir, 
                  save_interval=config.training.save_every, 
                  visualize_every=visualize_every, 
                  visualize_dir=run_visualization_dir,
                  use_wandb=use_wandb)


if __name__ == "__main__":
    main()