File size: 4,785 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os.path as osp
import os
import sys
import itertools

sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
import cv2
import numpy as np

from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2


class MP3D_Multi(BaseMultiViewDataset):
    def __init__(self, *args, split, ROOT, **kwargs):
        self.ROOT = ROOT
        self.video = False
        self.is_metric = True
        super().__init__(*args, **kwargs)

        self.loaded_data = self._load_data()

    def _load_data(self):
        scenes = os.listdir(self.ROOT)
        offset = 0
        overlaps = {scene: [] for scene in scenes}
        scene_img_list = {scene: [] for scene in scenes}
        images = []

        j = 0
        for scene in scenes:
            scene_dir = osp.join(self.ROOT, scene)
            rgb_dir = osp.join(scene_dir, "rgb")
            basenames = sorted(
                [f[:-4] for f in os.listdir(rgb_dir) if f.endswith(".png")]
            )
            overlap = np.load(osp.join(scene_dir, "overlap.npy"))
            overlaps[scene] = overlap
            num_imgs = len(basenames)

            images.extend(
                [(scene, i, basename) for i, basename in enumerate(basenames)]
            )
            scene_img_list[scene] = np.arange(num_imgs) + offset
            offset += num_imgs
            j += 1

        self.scenes = scenes
        self.scene_img_list = scene_img_list
        self.images = images
        self.overlaps = overlaps

    def __len__(self):
        return len(self.images)

    def get_image_num(self):
        return len(self.images)

    def _get_views(self, idx, resolution, rng, num_views):
        num_views_posible = 0
        num_unique = num_views if not self.allow_repeat else max(num_views // 3, 3)
        while num_views_posible < num_unique - 1:
            scene, img_idx, _ = self.images[idx]
            overlap = self.overlaps[scene]
            sel_img_idx = np.where(overlap[:, 0] == img_idx)[0]
            overlap_sel = overlap[sel_img_idx]
            overlap_sel = overlap_sel[
                (overlap_sel[:, 2] > 0.01) * (overlap_sel[:, 2] < 1)
            ]
            num_views_posible = len(overlap_sel)
            if num_views_posible >= num_unique - 1:
                break
            idx = rng.choice(len(self.images))

        ref_id = self.scene_img_list[scene][img_idx]
        ids = self.scene_img_list[scene][overlap_sel[:, 1].astype(np.int64)]
        replace = False if not self.allow_repeat else True
        image_idxs = rng.choice(
            ids,
            num_views - 1,
            replace=replace,
            p=overlap_sel[:, 2] / np.sum(overlap_sel[:, 2]),
        )
        image_idxs = np.concatenate([[ref_id], image_idxs])

        ordered_video = False
        views = []
        for v, view_idx in enumerate(image_idxs):
            scene, _, basename = self.images[view_idx]
            scene_dir = osp.join(self.ROOT, scene)
            rgb_path = osp.join(scene_dir, "rgb", basename + ".png")
            depth_path = osp.join(scene_dir, "depth", basename + ".npy")
            cam_path = osp.join(scene_dir, "cam", basename + ".npz")

            rgb_image = imread_cv2(rgb_path, cv2.IMREAD_COLOR)
            depthmap = np.load(depth_path).astype(np.float32)
            depthmap[~np.isfinite(depthmap)] = 0  # invalid
            cam_file = np.load(cam_path)
            intrinsics = cam_file["intrinsics"]
            camera_pose = cam_file["pose"]

            rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
                rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
            )

            # generate img mask and raymap mask
            img_mask, ray_mask = self.get_img_and_ray_masks(
                self.is_metric, v, rng, p=[0.85, 0.1, 0.05]
            )

            views.append(
                dict(
                    img=rgb_image,
                    depthmap=depthmap.astype(np.float32),
                    camera_pose=camera_pose.astype(np.float32),
                    camera_intrinsics=intrinsics.astype(np.float32),
                    dataset="mp3d",
                    label=scene + "_" + rgb_path,
                    instance=f"{str(idx)}_{str(view_idx)}",
                    is_metric=self.is_metric,
                    is_video=ordered_video,
                    quantile=np.array(0.99, dtype=np.float32),
                    img_mask=img_mask,
                    ray_mask=ray_mask,
                    camera_only=False,
                    depth_only=False,
                    single_view=False,
                    reset=False,
                )
            )
        assert len(views) == num_views
        return views