vmem / extern /CUT3R /eval /relpose /evo_utils.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
raw
history blame
14.4 kB
import os
import re
from copy import deepcopy
from pathlib import Path
import evo.main_ape as main_ape
import evo.main_rpe as main_rpe
import matplotlib.pyplot as plt
import numpy as np
from evo.core import sync
from evo.core.metrics import PoseRelation, Unit
from evo.core.trajectory import PosePath3D, PoseTrajectory3D
from evo.tools import file_interface, plot
from scipy.spatial.transform import Rotation
from evo.core import metrics
def sintel_cam_read(filename):
"""Read camera data, return (M,N) tuple.
M is the intrinsic matrix, N is the extrinsic matrix, so that
x = M*N*X,
with x being a point in homogeneous image pixel coordinates, X being a
point in homogeneous world coordinates.
"""
TAG_FLOAT = 202021.25
f = open(filename, "rb")
check = np.fromfile(f, dtype=np.float32, count=1)[0]
assert (
check == TAG_FLOAT
), " cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format(
TAG_FLOAT, check
)
M = np.fromfile(f, dtype="float64", count=9).reshape((3, 3))
N = np.fromfile(f, dtype="float64", count=12).reshape((3, 4))
return M, N
def load_replica_traj(gt_file):
traj_w_c = np.loadtxt(gt_file)
assert traj_w_c.shape[1] == 12 or traj_w_c.shape[1] == 16
poses = [
np.array(
[
[r[0], r[1], r[2], r[3]],
[r[4], r[5], r[6], r[7]],
[r[8], r[9], r[10], r[11]],
[0, 0, 0, 1],
]
)
for r in traj_w_c
]
pose_path = PosePath3D(poses_se3=poses)
timestamps_mat = np.arange(traj_w_c.shape[0]).astype(float)
traj = PoseTrajectory3D(poses_se3=pose_path.poses_se3, timestamps=timestamps_mat)
xyz = traj.positions_xyz
# shift -1 column -> w in back column
# quat = np.roll(traj.orientations_quat_wxyz, -1, axis=1)
# uncomment this line if the quaternion is in scalar-first format
quat = traj.orientations_quat_wxyz
traj_tum = np.column_stack((xyz, quat))
return (traj_tum, timestamps_mat)
def load_sintel_traj(gt_file): # './data/sintel/training/camdata_left/alley_2'
# Refer to ParticleSfM
gt_pose_lists = sorted(os.listdir(gt_file))
gt_pose_lists = [
os.path.join(gt_file, x) for x in gt_pose_lists if x.endswith(".cam")
]
tstamps = [float(x.split("/")[-1][:-4].split("_")[-1]) for x in gt_pose_lists]
gt_poses = [
sintel_cam_read(f)[1] for f in gt_pose_lists
] # [1] means get the extrinsic
xyzs, wxyzs = [], []
tum_gt_poses = []
for gt_pose in gt_poses:
gt_pose = np.concatenate([gt_pose, np.array([[0, 0, 0, 1]])], 0)
gt_pose_inv = np.linalg.inv(gt_pose) # world2cam -> cam2world
xyz = gt_pose_inv[:3, -1]
xyzs.append(xyz)
R = Rotation.from_matrix(gt_pose_inv[:3, :3])
xyzw = R.as_quat() # scalar-last for scipy
wxyz = np.array([xyzw[-1], xyzw[0], xyzw[1], xyzw[2]])
wxyzs.append(wxyz)
tum_gt_pose = np.concatenate([xyz, wxyz], 0) # TODO: check if this is correct
tum_gt_poses.append(tum_gt_pose)
tum_gt_poses = np.stack(tum_gt_poses, 0)
tum_gt_poses[:, :3] = tum_gt_poses[:, :3] - np.mean(
tum_gt_poses[:, :3], 0, keepdims=True
)
tt = np.expand_dims(np.stack(tstamps, 0), -1)
return tum_gt_poses, tt
def load_traj(gt_traj_file, traj_format="sintel", skip=0, stride=1, num_frames=None):
"""Read trajectory format. Return in TUM-RGBD format.
Returns:
traj_tum (N, 7): camera to world poses in (x,y,z,qx,qy,qz,qw)
timestamps_mat (N, 1): timestamps
"""
if traj_format == "replica":
traj_tum, timestamps_mat = load_replica_traj(gt_traj_file)
elif traj_format == "sintel":
traj_tum, timestamps_mat = load_sintel_traj(gt_traj_file)
elif traj_format in ["tum", "tartanair"]:
traj = file_interface.read_tum_trajectory_file(gt_traj_file)
xyz = traj.positions_xyz
quat = traj.orientations_quat_wxyz
timestamps_mat = traj.timestamps
traj_tum = np.column_stack((xyz, quat))
else:
raise NotImplementedError
traj_tum = traj_tum[skip::stride]
timestamps_mat = timestamps_mat[skip::stride]
if num_frames is not None:
traj_tum = traj_tum[:num_frames]
timestamps_mat = timestamps_mat[:num_frames]
return traj_tum, timestamps_mat
def update_timestamps(gt_file, traj_format, skip=0, stride=1):
"""Update timestamps given a"""
if traj_format == "tum":
traj_t_map_file = gt_file.replace("groundtruth.txt", "rgb.txt")
timestamps = load_timestamps(traj_t_map_file, traj_format)
return timestamps[skip::stride]
elif traj_format == "tartanair":
traj_t_map_file = gt_file.replace("gt_pose.txt", "times.txt")
timestamps = load_timestamps(traj_t_map_file, traj_format)
return timestamps[skip::stride]
def load_timestamps(time_file, traj_format="replica"):
if traj_format in ["tum", "tartanair"]:
with open(time_file, "r+") as f:
lines = f.readlines()
timestamps_mat = [
float(x.split(" ")[0]) for x in lines if not x.startswith("#")
]
return timestamps_mat
def make_traj(args) -> PoseTrajectory3D:
if isinstance(args, tuple) or isinstance(args, list):
traj, tstamps = args
return PoseTrajectory3D(
positions_xyz=traj[:, :3],
orientations_quat_wxyz=traj[:, 3:],
timestamps=tstamps,
)
assert isinstance(args, PoseTrajectory3D), type(args)
return deepcopy(args)
def eval_metrics(pred_traj, gt_traj=None, seq="", filename="", sample_stride=1):
if sample_stride > 1:
pred_traj[0] = pred_traj[0][::sample_stride]
pred_traj[1] = pred_traj[1][::sample_stride]
if gt_traj is not None:
updated_gt_traj = []
updated_gt_traj.append(gt_traj[0][::sample_stride])
updated_gt_traj.append(gt_traj[1][::sample_stride])
gt_traj = updated_gt_traj
pred_traj = make_traj(pred_traj)
if gt_traj is not None:
gt_traj = make_traj(gt_traj)
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
pred_traj.timestamps = gt_traj.timestamps
else:
print(pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0])
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)
# ATE
traj_ref = gt_traj
traj_est = pred_traj
ate_result = main_ape.ape(
traj_ref,
traj_est,
est_name="traj",
pose_relation=PoseRelation.translation_part,
align=True,
correct_scale=True,
)
ate = ate_result.stats["rmse"]
# print(ate_result.np_arrays['error_array'])
# exit()
# RPE rotation and translation
delta_list = [1]
rpe_rots, rpe_transs = [], []
for delta in delta_list:
rpe_rots_result = main_rpe.rpe(
traj_ref,
traj_est,
est_name="traj",
pose_relation=PoseRelation.rotation_angle_deg,
align=True,
correct_scale=True,
delta=delta,
delta_unit=Unit.frames,
rel_delta_tol=0.01,
all_pairs=True,
)
rot = rpe_rots_result.stats["rmse"]
rpe_rots.append(rot)
for delta in delta_list:
rpe_transs_result = main_rpe.rpe(
traj_ref,
traj_est,
est_name="traj",
pose_relation=PoseRelation.translation_part,
align=True,
correct_scale=True,
delta=delta,
delta_unit=Unit.frames,
rel_delta_tol=0.01,
all_pairs=True,
)
trans = rpe_transs_result.stats["rmse"]
rpe_transs.append(trans)
rpe_trans, rpe_rot = np.mean(rpe_transs), np.mean(rpe_rots)
with open(filename, "w+") as f:
f.write(f"Seq: {seq} \n\n")
f.write(f"{ate_result}")
f.write(f"{rpe_rots_result}")
f.write(f"{rpe_transs_result}")
print(f"Save results to {filename}")
return ate, rpe_trans, rpe_rot
def eval_metrics_first_pose_align_last_pose(
pred_traj, gt_traj=None, seq="", filename="", figpath="", sample_stride=1
):
if sample_stride > 1:
pred_traj[0] = pred_traj[0][::sample_stride]
pred_traj[1] = pred_traj[1][::sample_stride]
if gt_traj is not None:
gt_traj = [gt_traj[0][::sample_stride], gt_traj[1][::sample_stride]]
pred_traj = make_traj(pred_traj)
if gt_traj is not None:
gt_traj = make_traj(gt_traj)
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
pred_traj.timestamps = gt_traj.timestamps
else:
print(
"Different number of poses:",
pred_traj.timestamps.shape[0],
gt_traj.timestamps.shape[0],
)
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)
if gt_traj is not None and pred_traj is not None:
if len(gt_traj.poses_se3) > 0 and len(pred_traj.poses_se3) > 0:
first_gt_pose = gt_traj.poses_se3[0]
first_pred_pose = pred_traj.poses_se3[0]
# T = (first_gt_pose) * inv(first_pred_pose)
T = first_gt_pose @ np.linalg.inv(first_pred_pose)
# Apply T to every predicted pose
aligned_pred_poses = []
for pose in pred_traj.poses_se3:
aligned_pred_poses.append(T @ pose)
aligned_pred_traj = PoseTrajectory3D(
poses_se3=aligned_pred_poses,
timestamps=np.array(pred_traj.timestamps),
# optionally copy other fields if your make_traj object has them
)
pred_traj = aligned_pred_traj # .poses_se3 = aligned_pred_poses
plot_trajectory(
pred_traj,
gt_traj,
title=seq,
filename=figpath,
align=False,
correct_scale=False,
)
if gt_traj is not None and len(gt_traj.poses_se3) > 0:
gt_traj = PoseTrajectory3D(
poses_se3=[gt_traj.poses_se3[-1]], timestamps=[gt_traj.timestamps[-1]]
)
if pred_traj is not None and len(pred_traj.poses_se3) > 0:
pred_traj = PoseTrajectory3D(
poses_se3=[pred_traj.poses_se3[-1]], timestamps=[pred_traj.timestamps[-1]]
)
ate_result = main_ape.ape(
gt_traj,
pred_traj,
est_name="traj",
pose_relation=PoseRelation.translation_part,
align=False, # <-- important
correct_scale=False, # <-- important
)
ate = ate_result.stats["rmse"]
with open(filename, "w+") as f:
f.write(f"Seq: {seq}\n\n")
f.write(f"{ate_result}")
print(f"Save results to {filename}")
return ate
def best_plotmode(traj):
_, i1, i2 = np.argsort(np.var(traj.positions_xyz, axis=0))
plot_axes = "xyz"[i2] + "xyz"[i1]
return getattr(plot.PlotMode, plot_axes)
def plot_trajectory(
pred_traj, gt_traj=None, title="", filename="", align=True, correct_scale=True
):
pred_traj = make_traj(pred_traj)
if gt_traj is not None:
gt_traj = make_traj(gt_traj)
if pred_traj.timestamps.shape[0] == gt_traj.timestamps.shape[0]:
pred_traj.timestamps = gt_traj.timestamps
else:
print("WARNING", pred_traj.timestamps.shape[0], gt_traj.timestamps.shape[0])
gt_traj, pred_traj = sync.associate_trajectories(gt_traj, pred_traj)
if align:
pred_traj.align(gt_traj, correct_scale=correct_scale)
plot_collection = plot.PlotCollection("PlotCol")
fig = plt.figure(figsize=(8, 8))
plot_mode = best_plotmode(gt_traj if (gt_traj is not None) else pred_traj)
ax = plot.prepare_axis(fig, plot_mode)
ax.set_title(title)
if gt_traj is not None:
plot.traj(ax, plot_mode, gt_traj, "--", "gray", "Ground Truth")
plot.traj(ax, plot_mode, pred_traj, "-", "blue", "Predicted")
plot_collection.add_figure("traj_error", fig)
plot_collection.export(filename, confirm_overwrite=False)
plt.close(fig=fig)
print(f"Saved trajectory to {filename.replace('.png','')}_traj_error.png")
def save_trajectory_tum_format(traj, filename):
traj = make_traj(traj)
tostr = lambda a: " ".join(map(str, a))
with Path(filename).open("w") as f:
for i in range(traj.num_poses):
f.write(
f"{traj.timestamps[i]} {tostr(traj.positions_xyz[i])} {tostr(traj.orientations_quat_wxyz[i][[0,1,2,3]])}\n"
)
print(f"Saved trajectory to {filename}")
def extract_metrics(file_path):
with open(file_path, "r") as file:
content = file.read()
# Extract metrics using regex
ate_match = re.search(
r"APE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)", content, re.DOTALL
)
rpe_trans_match = re.search(
r"RPE w.r.t. translation part \(m\).*?rmse\s+([0-9.]+)", content, re.DOTALL
)
rpe_rot_match = re.search(
r"RPE w.r.t. rotation angle in degrees \(deg\).*?rmse\s+([0-9.]+)",
content,
re.DOTALL,
)
ate = float(ate_match.group(1)) if ate_match else 0.0
rpe_trans = float(rpe_trans_match.group(1)) if rpe_trans_match else 0.0
rpe_rot = float(rpe_rot_match.group(1)) if rpe_rot_match else 0.0
return ate, rpe_trans, rpe_rot
def process_directory(directory):
results = []
for root, _, files in os.walk(directory):
if files is not None:
files = sorted(files)
for file in files:
if file.endswith("_metric.txt"):
file_path = os.path.join(root, file)
seq_name = file.replace("_eval_metric.txt", "")
ate, rpe_trans, rpe_rot = extract_metrics(file_path)
results.append((seq_name, ate, rpe_trans, rpe_rot))
return results
def calculate_averages(results):
total_ate = sum(r[1] for r in results)
total_rpe_trans = sum(r[2] for r in results)
total_rpe_rot = sum(r[3] for r in results)
count = len(results)
if count == 0:
return 0.0, 0.0, 0.0
avg_ate = total_ate / count
avg_rpe_trans = total_rpe_trans / count
avg_rpe_rot = total_rpe_rot / count
return avg_ate, avg_rpe_trans, avg_rpe_rot