liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os.path as osp
import cv2
import numpy as np
import itertools
import os
import sys
import json
sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
from tqdm import tqdm
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2
import re
def extract_number(filename):
match = re.search(r"\d+", filename)
if match:
return int(match.group())
return 0
class OmniObject3D_Multi(BaseMultiViewDataset):
def __init__(self, *args, ROOT, **kwargs):
self.ROOT = ROOT
self.video = False
self.is_metric = False # True
super().__init__(*args, **kwargs)
self.loaded_data = self._load_data()
def _load_data(self):
self.scenes = [
d
for d in os.listdir(self.ROOT)
if os.path.isdir(os.path.join(self.ROOT, d))
]
with open(os.path.join(self.ROOT, "scale.json"), "r") as f:
self.scales = json.load(f)
offset = 0
scenes = []
sceneids = []
scene_img_list = []
images = []
start_img_ids = []
j = 0
for scene in tqdm(self.scenes):
scene_dir = osp.join(self.ROOT, scene)
rgb_dir = osp.join(scene_dir, "rgb")
basenames = sorted(
[f[:-4] for f in os.listdir(rgb_dir) if f.endswith(".png")],
key=extract_number,
)
num_imgs = len(basenames)
cut_off = (
self.num_views if not self.allow_repeat else max(self.num_views // 3, 3)
)
if num_imgs < cut_off:
print(f"Skipping {scene}")
continue
img_ids = list(np.arange(num_imgs) + offset)
start_img_ids_ = img_ids[: num_imgs - cut_off + 1]
start_img_ids.extend([(scene, id) for id in start_img_ids_])
sceneids.extend([j] * num_imgs)
images.extend(basenames)
scenes.append(scene)
scene_img_list.append(img_ids)
# offset groups
offset += num_imgs
j += 1
self.scenes = scenes
self.sceneids = sceneids
self.images = images
self.start_img_ids = start_img_ids
self.scene_img_list = scene_img_list
def __len__(self):
return len(self.start_img_ids)
def get_image_num(self):
return len(self.images)
def _get_views(self, idx, resolution, rng, num_views):
scene, start_id = self.start_img_ids[idx]
all_image_ids = self.scene_img_list[self.sceneids[start_id]]
pos, ordered_video = self.get_seq_from_start_id(
num_views, start_id, all_image_ids, rng, max_interval=100, video_prob=0.0
)
image_idxs = np.array(all_image_ids)[pos]
views = []
for v, view_idx in enumerate(image_idxs):
scene_id = self.sceneids[view_idx]
scene_dir = osp.join(self.ROOT, self.scenes[scene_id])
rgb_dir = osp.join(scene_dir, "rgb")
depth_dir = osp.join(scene_dir, "depth")
cam_dir = osp.join(scene_dir, "cam")
basename = self.images[view_idx]
# Load RGB image
rgb_image = imread_cv2(osp.join(rgb_dir, basename + ".png"))
depthmap = np.load(osp.join(depth_dir, basename + ".npy"))
cam = np.load(osp.join(cam_dir, basename + ".npz"))
camera_pose = cam["pose"]
intrinsics = cam["intrinsics"]
scale = self.scales[self.scenes[scene_id]]
depthmap = depthmap / scale / 1000.0
camera_pose[:3, 3] = camera_pose[:3, 3] / scale / 1000.0
rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary(
rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx
)
img_mask, ray_mask = self.get_img_and_ray_masks(
self.is_metric, v, rng, p=[0.8, 0.15, 0.05]
)
views.append(
dict(
img=rgb_image,
depthmap=depthmap.astype(np.float32),
camera_pose=camera_pose.astype(np.float32),
camera_intrinsics=intrinsics.astype(np.float32),
dataset="OmniObject3D",
label=self.scenes[scene_id] + "_" + basename,
instance=f"{str(idx)}_{str(view_idx)}",
is_metric=self.is_metric,
is_video=ordered_video,
quantile=np.array(1.0, dtype=np.float32),
img_mask=img_mask,
ray_mask=ray_mask,
camera_only=False,
depth_only=False,
single_view=False,
reset=False,
)
)
assert len(views) == num_views
return views