liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os.path as osp
import os
import numpy as np
import sys
sys.path.append(osp.join(osp.dirname(__file__), "..", ".."))
import h5py
from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset
from dust3r.utils.image import imread_cv2
class Waymo_Multi(BaseMultiViewDataset):
"""Dataset of outdoor street scenes, 5 images each time"""
def __init__(self, *args, ROOT, **kwargs):
self.ROOT = ROOT
self.max_interval = 8
self.video = True
self.is_metric = True
super().__init__(*args, **kwargs)
assert self.split is None
self._load_data()
def load_invalid_dict(self, h5_file_path):
invalid_dict = {}
with h5py.File(h5_file_path, "r") as h5f:
for scene in h5f:
data = h5f[scene]["invalid_pairs"][:]
invalid_pairs = set(
tuple(pair.decode("utf-8").split("_")) for pair in data
)
invalid_dict[scene] = invalid_pairs
return invalid_dict
def _load_data(self):
invalid_dict = self.load_invalid_dict(
os.path.join(self.ROOT, "invalid_files.h5")
)
scene_dirs = sorted(
[
d
for d in os.listdir(self.ROOT)
if os.path.isdir(os.path.join(self.ROOT, d))
]
)
offset = 0
scenes = []
sceneids = []
images = []
start_img_ids = []
scene_img_list = []
is_video = []
j = 0
for scene in scene_dirs:
scene_dir = osp.join(self.ROOT, scene)
invalid_pairs = invalid_dict.get(scene, set())
seq2frames = {}
for f in os.listdir(scene_dir):
if not f.endswith(".jpg"):
continue
basename = f[:-4]
frame_id = basename.split("_")[0]
seq_id = basename.split("_")[1]
if seq_id == "5":
continue
if (seq_id, frame_id) in invalid_pairs:
continue # Skip invalid files
if seq_id not in seq2frames:
seq2frames[seq_id] = []
seq2frames[seq_id].append(frame_id)
for seq_id, frame_ids in seq2frames.items():
frame_ids = sorted(frame_ids)
num_imgs = len(frame_ids)
img_ids = list(np.arange(num_imgs) + offset)
cut_off = (
self.num_views
if not self.allow_repeat
else max(self.num_views // 3, 3)
)
start_img_ids_ = img_ids[: num_imgs - cut_off + 1]
if num_imgs < cut_off:
print(f"Skipping {scene}_{seq_id}")
continue
scenes.append((scene, seq_id))
sceneids.extend([j] * num_imgs)
images.extend(frame_ids)
start_img_ids.extend(start_img_ids_)
scene_img_list.append(img_ids)
offset += num_imgs
j += 1
self.scenes = scenes
self.sceneids = sceneids
self.images = images
self.start_img_ids = start_img_ids
self.scene_img_list = scene_img_list
self.is_video = is_video
def __len__(self):
return len(self.start_img_ids)
def get_image_num(self):
return len(self.images)
def get_stats(self):
return f"{len(self)} groups of views"
def _get_views(self, idx, resolution, rng, num_views):
start_id = self.start_img_ids[idx]
all_image_ids = self.scene_img_list[self.sceneids[start_id]]
_, seq_id = self.scenes[self.sceneids[start_id]]
max_interval = self.max_interval // 2 if seq_id == "4" else self.max_interval
pos, ordered_video = self.get_seq_from_start_id(
num_views,
start_id,
all_image_ids,
rng,
max_interval=max_interval,
video_prob=0.9,
fix_interval_prob=0.9,
block_shuffle=16,
)
image_idxs = np.array(all_image_ids)[pos]
views = []
ordered_video = True
views = []
for v, view_idx in enumerate(image_idxs):
scene_id = self.sceneids[view_idx]
scene_dir, seq_id = self.scenes[scene_id]
scene_dir = osp.join(self.ROOT, scene_dir)
frame_id = self.images[view_idx]
impath = f"{frame_id}_{seq_id}"
image = imread_cv2(osp.join(scene_dir, impath + ".jpg"))
depthmap = imread_cv2(osp.join(scene_dir, impath + ".exr"))
camera_params = np.load(osp.join(scene_dir, impath + ".npz"))
intrinsics = np.float32(camera_params["intrinsics"])
camera_pose = np.float32(camera_params["cam2world"])
image, depthmap, intrinsics = self._crop_resize_if_necessary(
image, depthmap, intrinsics, resolution, rng, info=(scene_dir, impath)
)
# generate img mask and raymap mask
img_mask, ray_mask = self.get_img_and_ray_masks(
self.is_metric, v, rng, p=[0.85, 0.10, 0.05]
)
views.append(
dict(
img=image,
depthmap=depthmap,
camera_pose=camera_pose, # cam2world
camera_intrinsics=intrinsics,
dataset="Waymo",
label=osp.relpath(scene_dir, self.ROOT),
is_metric=self.is_metric,
instance=osp.join(scene_dir, impath + ".jpg"),
is_video=ordered_video,
quantile=np.array(0.98, dtype=np.float32),
img_mask=img_mask,
ray_mask=ray_mask,
camera_only=False,
depth_only=False,
single_view=False,
reset=False,
)
)
return views