import os.path as osp import cv2 import numpy as np import itertools import os import sys sys.path.append(osp.join(osp.dirname(__file__), "..", "..")) from tqdm import tqdm from dust3r.datasets.base.base_multiview_dataset import BaseMultiViewDataset from dust3r.utils.image import imread_cv2 class ScanNet_Multi(BaseMultiViewDataset): def __init__(self, *args, ROOT, **kwargs): self.ROOT = ROOT self.video = True self.is_metric = True self.max_interval = 30 super().__init__(*args, **kwargs) self.loaded_data = self._load_data(self.split) def _load_data(self, split): self.scene_root = osp.join( self.ROOT, "scans_train" if split == "train" else "scans_test" ) self.scenes = [ scene for scene in os.listdir(self.scene_root) if scene.startswith("scene") ] offset = 0 scenes = [] sceneids = [] scene_img_list = [] images = [] start_img_ids = [] j = 0 for scene in tqdm(self.scenes): scene_dir = osp.join(self.scene_root, scene) with np.load( osp.join(scene_dir, "new_scene_metadata.npz"), allow_pickle=True ) as data: basenames = data["images"] num_imgs = len(basenames) img_ids = list(np.arange(num_imgs) + offset) cut_off = ( self.num_views if not self.allow_repeat else max(self.num_views // 3, 3) ) start_img_ids_ = img_ids[: num_imgs - cut_off + 1] if num_imgs < cut_off: print(f"Skipping {scene}") continue start_img_ids.extend(start_img_ids_) sceneids.extend([j] * num_imgs) images.extend(basenames) scenes.append(scene) scene_img_list.append(img_ids) # offset groups offset += num_imgs j += 1 self.scenes = scenes self.sceneids = sceneids self.images = images self.start_img_ids = start_img_ids self.scene_img_list = scene_img_list def __len__(self): return len(self.start_img_ids) def get_image_num(self): return len(self.images) def _get_views(self, idx, resolution, rng, num_views): start_id = self.start_img_ids[idx] all_image_ids = self.scene_img_list[self.sceneids[start_id]] pos, ordered_video = self.get_seq_from_start_id( num_views, start_id, all_image_ids, rng, max_interval=self.max_interval, video_prob=0.6, fix_interval_prob=0.6, block_shuffle=16, ) image_idxs = np.array(all_image_ids)[pos] views = [] for v, view_idx in enumerate(image_idxs): scene_id = self.sceneids[view_idx] scene_dir = osp.join(self.scene_root, self.scenes[scene_id]) rgb_dir = osp.join(scene_dir, "color") depth_dir = osp.join(scene_dir, "depth") cam_dir = osp.join(scene_dir, "cam") basename = self.images[view_idx] # Load RGB image rgb_image = imread_cv2(osp.join(rgb_dir, basename + ".jpg")) # Load depthmap depthmap = imread_cv2( osp.join(depth_dir, basename + ".png"), cv2.IMREAD_UNCHANGED ) depthmap = depthmap.astype(np.float32) / 1000 depthmap[~np.isfinite(depthmap)] = 0 # invalid cam = np.load(osp.join(cam_dir, basename + ".npz")) camera_pose = cam["pose"] intrinsics = cam["intrinsics"] rgb_image, depthmap, intrinsics = self._crop_resize_if_necessary( rgb_image, depthmap, intrinsics, resolution, rng=rng, info=view_idx ) # generate img mask and raymap mask img_mask, ray_mask = self.get_img_and_ray_masks( self.is_metric, v, rng, p=[0.75, 0.2, 0.05] ) views.append( dict( img=rgb_image, depthmap=depthmap.astype(np.float32), camera_pose=camera_pose.astype(np.float32), camera_intrinsics=intrinsics.astype(np.float32), dataset="ScanNet", label=self.scenes[scene_id] + "_" + basename, instance=f"{str(idx)}_{str(view_idx)}", is_metric=self.is_metric, is_video=ordered_video, quantile=np.array(0.98, dtype=np.float32), img_mask=img_mask, ray_mask=ray_mask, camera_only=False, depth_only=False, single_view=False, reset=False, ) ) assert len(views) == num_views return views