# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # modified from DUSt3R import numpy as np import torch from dust3r.utils.geometry import xy_grid def estimate_focal_knowing_depth( pts3d, pp, focal_mode="median", min_focal=0.0, max_focal=np.inf ): """Reprojection method, for when the absolute depth is known: 1) estimate the camera focal using a robust estimator 2) reproject points onto true rays, minimizing a certain error """ B, H, W, THREE = pts3d.shape assert THREE == 3 pixels = xy_grid(W, H, device=pts3d.device).view(1, -1, 2) - pp.view( -1, 1, 2 ) # B,HW,2 pts3d = pts3d.flatten(1, 2) # (B, HW, 3) if focal_mode == "median": with torch.no_grad(): u, v = pixels.unbind(dim=-1) x, y, z = pts3d.unbind(dim=-1) fx_votes = (u * z) / x fy_votes = (v * z) / y f_votes = torch.cat((fx_votes.view(B, -1), fy_votes.view(B, -1)), dim=-1) focal = torch.nanmedian(f_votes, dim=-1).values elif focal_mode == "weiszfeld": xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num( posinf=0, neginf=0 ) # homogeneous (x,y,1) dot_xy_px = (xy_over_z * pixels).sum(dim=-1) dot_xy_xy = xy_over_z.square().sum(dim=-1) focal = dot_xy_px.mean(dim=1) / dot_xy_xy.mean(dim=1) for iter in range(10): dis = (pixels - focal.view(-1, 1, 1) * xy_over_z).norm(dim=-1) w = dis.clip(min=1e-8).reciprocal() focal = (w * dot_xy_px).mean(dim=1) / (w * dot_xy_xy).mean(dim=1) else: raise ValueError(f"bad {focal_mode=}") focal_base = max(H, W) / ( 2 * np.tan(np.deg2rad(60) / 2) ) # size / 1.1547005383792515 focal = focal.clip(min=min_focal * focal_base, max=max_focal * focal_base) return focal