Spaces:
Runtime error
Runtime error
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| from llama_cpp import Llama | |
| from concurrent.futures import ThreadPoolExecutor, as_completed | |
| from tqdm import tqdm | |
| import uvicorn | |
| from dotenv import load_dotenv | |
| from difflib import SequenceMatcher | |
| import re | |
| import spaces # Importar la librer铆a spaces | |
| # Cargar variables de entorno | |
| load_dotenv() | |
| # Inicializar aplicaci贸n FastAPI | |
| app = FastAPI() | |
| # Diccionario global para almacenar los modelos | |
| global_data = { | |
| 'models': [] | |
| } | |
| # Configuraci贸n de los modelos | |
| model_configs = [ | |
| {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, | |
| {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, | |
| {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, | |
| {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, | |
| {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, | |
| {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, | |
| {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, | |
| {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, | |
| {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, | |
| {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf", "name": "Meta Llama 3.1-70B"}, | |
| {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}, | |
| {"repo_id": "Ffftdtd5dtft/Hermes-3-Llama-3.1-8B-IQ1_S-GGUF", "filename": "hermes-3-llama-3.1-8b-iq1_s-imat.gguf", "name": "Hermes 3 Llama 3.1-8B"}, | |
| {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf", "name": "Phi 3.5 Mini Instruct"}, | |
| {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-70B Instruct"}, | |
| {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"}, | |
| {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"}, | |
| {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"}, | |
| {"repo_id": "Ffftdtd5dtft/Mistral-NeMo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf", "name": "Mistral NeMo Minitron 8B Base"}, | |
| {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"} | |
| ] | |
| # Clase para gestionar modelos | |
| class ModelManager: | |
| def __init__(self): | |
| self.models = [] | |
| self.loaded = False # Para verificar si ya est谩n cargados | |
| def load_model(self, model_config): | |
| print(f"Cargando modelo: {model_config['name']}...") | |
| return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']} | |
| def load_all_models(self): | |
| if self.loaded: # Si los modelos ya est谩n cargados, no los vuelve a cargar | |
| print("Modelos ya est谩n cargados. No es necesario volver a cargarlos.") | |
| return self.models | |
| print("Iniciando carga de modelos...") | |
| with ThreadPoolExecutor() as executor: # No hay l铆mite de trabajadores | |
| futures = [executor.submit(self.load_model, config) for config in model_configs] | |
| models = [] | |
| for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"): | |
| try: | |
| model = future.result() | |
| models.append(model) | |
| print(f"Modelo cargado exitosamente: {model['name']}") | |
| except Exception as e: | |
| print(f"Error al cargar el modelo: {e}") | |
| self.models = models | |
| self.loaded = True # Marcar como cargados | |
| print("Todos los modelos han sido cargados.") | |
| return self.models | |
| # Instanciar ModelManager | |
| model_manager = ModelManager() | |
| # Cargar modelos al iniciar la aplicaci贸n, solo la primera vez | |
| global_data['models'] = model_manager.load_all_models() | |
| # Modelo global para la solicitud de chat | |
| class ChatRequest(BaseModel): | |
| message: str | |
| top_k: int = 50 | |
| top_p: float = 0.95 | |
| temperature: float = 0.7 | |
| # Funci贸n para generar respuestas de chat | |
| # Anotaci贸n para usar GPU con duraci贸n 0 | |
| def generate_chat_response(request, model_data): | |
| try: | |
| user_input = normalize_input(request.message) | |
| llm = model_data['model'] | |
| response = llm.create_chat_completion( | |
| messages=[{"role": "user", "content": user_input}], | |
| top_k=request.top_k, | |
| top_p=request.top_p, | |
| temperature=request.temperature | |
| ) | |
| reply = response['choices'][0]['message']['content'] | |
| return {"response": reply, "literal": user_input, "model_name": model_data['name']} | |
| except Exception as e: | |
| return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']} | |
| def normalize_input(input_text): | |
| return input_text.strip() | |
| def remove_duplicates(text): | |
| text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) | |
| text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) | |
| text = text.replace('[/INST]', '') | |
| lines = text.split('\n') | |
| unique_lines = list(dict.fromkeys(lines)) | |
| return '\n'.join(unique_lines).strip() | |
| def remove_repetitive_responses(responses): | |
| seen = set() | |
| unique_responses = [] | |
| for response in responses: | |
| normalized_response = remove_duplicates(response['response']) | |
| if normalized_response not in seen: | |
| seen.add(normalized_response) | |
| unique_responses.append(response) | |
| return unique_responses | |
| def select_best_response(responses): | |
| print("Filtrando respuestas...") | |
| responses = remove_repetitive_responses(responses) | |
| responses = [remove_duplicates(response['response']) for response in responses] | |
| unique_responses = list(set(responses)) | |
| coherent_responses = filter_by_coherence(unique_responses) | |
| best_response = filter_by_similarity(coherent_responses) | |
| return best_response | |
| def filter_by_coherence(responses): | |
| print("Ordenando respuestas por coherencia...") | |
| responses.sort(key=len, reverse=True) | |
| return responses | |
| def filter_by_similarity(responses): | |
| print("Filtrando respuestas por similitud...") | |
| responses.sort(key=len, reverse=True) | |
| best_response = responses[0] | |
| for i in range(1, len(responses)): | |
| ratio = SequenceMatcher(None, best_response, responses[i]).ratio() | |
| if ratio < 0.9: | |
| best_response = responses[i] | |
| break | |
| return best_response | |
| def worker_function(model_data, request): | |
| print(f"Generando respuesta con el modelo: {model_data['name']}...") | |
| response = generate_chat_response(request, model_data) | |
| return response | |
| async def generate_chat(request: ChatRequest): | |
| if not request.message.strip(): | |
| raise HTTPException(status_code=400, detail="The message cannot be empty.") | |
| print(f"Procesando solicitud: {request.message}") | |
| responses = [] | |
| num_models = len(global_data['models']) | |
| with ThreadPoolExecutor() as executor: # No se establece l铆mite de concurrencia | |
| futures = [executor.submit(worker_function, model_data, request) for model_data in global_data['models']] | |
| for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"): | |
| try: | |
| response = future.result() | |
| responses.append(response) | |
| except Exception as exc: | |
| print(f"Error en la generaci贸n de respuesta: {exc}") | |
| best_response = select_best_response(responses) | |
| print(f"Mejor respuesta seleccionada: {best_response}") | |
| return { | |
| "best_response": best_response, | |
| "all_responses": responses | |
| } | |
| if __name__ == "__main__": | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |