Spaces:
Sleeping
Sleeping
File size: 14,119 Bytes
0ef6bf3 810f098 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 5bc7e2e 1facdab 0ef6bf3 1facdab 0ef6bf3 1facdab 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 cf30d53 0ef6bf3 5bc7e2e 0ef6bf3 cf30d53 55f04f3 5bc7e2e 55f04f3 5bc7e2e 55f04f3 0ef6bf3 cf30d53 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 5bc7e2e 0ef6bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import gradio as gr
import pandas as pd
import io
from typing import List, Optional, Tuple
import logging
# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class WebsiteCategorizerApp:
def __init__(self):
self.sheet_url = ""
self.sheet_data = []
self.current_index = 0
self.categories = ["NEWS/BLOG", "E-commerce", "OTHER", "COMPANIES", "Short"]
self.results_data = []
def convert_google_sheet_url(self, sheet_url: str) -> str:
try:
if "/edit#gid=" in sheet_url:
return sheet_url.replace("/edit#gid=", "/export?format=csv&gid=")
elif "/edit?usp=sharing" in sheet_url:
return sheet_url.replace("/edit?usp=sharing", "/export?format=csv")
elif "/edit" in sheet_url:
return sheet_url.replace("/edit", "/export?format=csv")
else:
return sheet_url
except Exception as e:
logger.error(f"Ошибка конвертации URL: {e}")
return ""
# def connect_to_sheet(self, sheet_url: str) -> Tuple[str, str]:
# try:
# if not sheet_url:
# return "❌ Ошибка: Введите URL Google таблицы", ""
# csv_url = self.convert_google_sheet_url(sheet_url)
# if not csv_url:
# return "❌ Ошибка: Неверный формат URL", ""
# df = pd.read_csv(csv_url)
# if df.empty:
# return "❌ Ошибка: Таблица пуста", ""
# if len(df.columns) < 2:
# return "❌ Ошибка: Нужно минимум 2 столбца (URL и категория)", ""
# self.sheet_data = []
# self.results_data = []
# url_column = df.columns[0]
# category_column = df.columns[1]
# for index, row in df.iterrows():
# url = str(row[url_column]).strip() if pd.notna(row[url_column]) else ""
# category = str(row[category_column]).strip() if pd.notna(row[category_column]) else ""
# if url and url.lower() not in ['url', 'nan']:
# self.sheet_data.append({
# "index": index,
# "url": url,
# "category": category if category.lower() != 'nan' else ""
# })
# self.results_data.append({
# "url": url,
# "category": category if category.lower() != 'nan' else ""
# })
# if not self.sheet_data:
# return "❌ Ошибка: Не найдены валидные URL", ""
# self.current_index = 0
# self.sheet_url = sheet_url
# return f"✅ Подключено успешно! Найдено {len(self.sheet_data)} записей", self.get_current_url_for_display()
# except Exception as e:
# logger.error(f"Ошибка подключения к таблице: {e}")
# return f"❌ Ошибка: {str(e)}\n\nУбедитесь что таблица публичная и URL корректный", ""
def connect_to_sheet(self, sheet_url: str) -> Tuple[str, str]:
try:
if not sheet_url:
return "❌ Ошибка: Введите URL Google таблицы", ""
csv_url = self.convert_google_sheet_url(sheet_url)
if not csv_url:
return "❌ Ошибка: Неверный формат URL", ""
df = pd.read_csv(csv_url)
if df.empty or df.shape[1] < 1:
return "❌ Ошибка: Таблица пуста или нет данных", ""
# Always use column A for URL/title
url_column = df.columns[0]
# Find category column (case-insensitive match for 'category')
category_col_candidates = [c for c in df.columns if str(c).strip().lower() == "category"]
category_column = category_col_candidates[0] if category_col_candidates else None
self.sheet_data = []
self.results_data = []
for index, row in df.iterrows():
raw_value = str(row[url_column]).strip() if pd.notna(row[url_column]) else ""
if not raw_value:
continue
# Detect if it's URL or title
if raw_value.lower().startswith("http"):
url = raw_value
else:
# treat as title → skip until we find an actual URL? (optional)
url = ""
# Category (if exists)
category = ""
if category_column and pd.notna(row[category_column]):
category = str(row[category_column]).strip()
# Only add if URL is valid
if url:
self.sheet_data.append({
"index": index,
"url": url,
"category": category
})
self.results_data.append({
"url": url,
"category": category
})
if not self.sheet_data:
return "❌ Ошибка: Не найдены валидные URL", ""
self.current_index = 0
self.sheet_url = sheet_url
return f"✅ Подключено успешно! Найдено {len(self.sheet_data)} записей", self.get_current_url_for_display()
except Exception as e:
logger.error(f"Ошибка подключения к таблице: {e}")
return f"❌ Ошибка: {str(e)}", ""
def get_current_url_for_display(self) -> str:
if not self.sheet_data or self.current_index >= len(self.sheet_data):
return ""
url = self.sheet_data[self.current_index]["url"]
if url and not url.startswith(("http://", "https://")):
url = "http://" + url
return url
def get_current_info(self) -> Tuple[str, str, str]:
if not self.sheet_data:
return "", "", "Нет данных"
if self.current_index >= len(self.sheet_data):
self.current_index = 0
current = self.sheet_data[self.current_index]
return current["url"], current["category"], f"{self.current_index + 1}/{len(self.sheet_data)}"
def navigate_to_index(self, index: int) -> Tuple[str, str, str, str]:
if not self.sheet_data:
return "", "", "", "Нет данных"
index = max(0, min(index, len(self.sheet_data) - 1))
self.current_index = index
url, category, info = self.get_current_info()
return url, category, info, self.get_current_url_for_display()
def previous_record(self) -> Tuple[str, str, str, str]:
if not self.sheet_data:
return "", "", "", "Нет данных"
self.current_index = (self.current_index - 1) % len(self.sheet_data)
return self.navigate_to_index(self.current_index)
def next_record(self) -> Tuple[str, str, str, str]:
if not self.sheet_data:
return "", "", "", "Нет данных"
self.current_index = (self.current_index + 1) % len(self.sheet_data)
return self.navigate_to_index(self.current_index)
def save_category(self, category: str) -> Tuple[str, str]:
if not self.sheet_data:
return "❌ Нет данных для сохранения", ""
try:
self.sheet_data[self.current_index]["category"] = category
self.results_data[self.current_index]["category"] = category
csv_buffer = io.StringIO()
pd.DataFrame(self.results_data).to_csv(csv_buffer, index=False, encoding='utf-8')
return f"✅ '{category}' сохранено", csv_buffer.getvalue()
except Exception as e:
logger.error(f"Ошибка сохранения категории: {e}")
return f"❌ Ошибка: {str(e)}", ""
def export_results(self) -> str:
if not self.results_data:
return ""
csv_buffer = io.StringIO()
pd.DataFrame(self.results_data).to_csv(csv_buffer, index=False, encoding='utf-8')
return csv_buffer.getvalue()
app = WebsiteCategorizerApp()
with gr.Blocks(title="Категоризатор сайтов", theme=gr.themes.Soft()) as demo:
gr.HTML("<h2 style='text-align:center;'>🌐 Категоризатор сайтов</h2>")
with gr.Tabs():
with gr.TabItem("Категоризация"):
with gr.Row():
with gr.Column(scale=1):
sheet_url_input = gr.Textbox(label="URL Google таблицы", lines=2)
connect_btn = gr.Button("🔗 Подключить", variant="primary")
connection_status = gr.HTML("")
with gr.Row():
prev_btn = gr.Button("⬅️", elem_id="prev-btn")
next_btn = gr.Button("➡️", elem_id="next-btn")
record_info = gr.HTML("")
current_url_display = gr.Textbox(label="Текущий URL", interactive=False)
category_dropdown = gr.Dropdown(choices=app.categories, label="Категория")
save_status = gr.HTML("")
export_btn = gr.Button("📥 Скачать CSV")
export_file = gr.File(visible=False)
with gr.Column(scale=5):
website_viewer = gr.HTML("""
<div style='height:900px;display:flex;align-items:center;justify-content:center;background:#eee;border-radius:8px;'>
<p>Подключите Google таблицу</p>
</div>
""")
with gr.TabItem("Текущая таблица"):
table_view = gr.DataFrame(
value=pd.DataFrame(app.results_data),
headers=["url", "category"],
datatype=["str", "str"],
interactive=True
)
refresh_table_btn = gr.Button("🔄 Обновить таблицу")
csv_data = gr.State("")
# def handle_connect(url):
# status, iframe_url = app.connect_to_sheet(url)
# if "✅" in status:
# url_display, category, info = app.get_current_info()
# iframe_html = f'<iframe src="{iframe_url}" width="100%" height="900px" style="border-radius:8px;"></iframe>'
# return status, iframe_html, url_display, category, info
# else:
# return status, website_viewer.value, "", "", ""
def handle_connect(url):
status, iframe_url = app.connect_to_sheet(url)
if "✅" in status:
url_display, category, info = app.get_current_info()
# dynamically merge categories from data
all_categories = list(set(app.categories + [
c for c in (row["category"] for row in app.results_data) if c
]))
iframe_html = f'<iframe src="{iframe_url}" width="100%" height="900px" style="border-radius:8px;"></iframe>'
return (
status,
iframe_html,
url_display,
gr.update(choices=all_categories, value=category),
info
)
else:
return (
status,
website_viewer.value,
"",
gr.update(choices=app.categories, value=None),
""
)
def handle_navigation(direction):
if direction == "next":
url_display, category, info, iframe_url = app.next_record()
else:
url_display, category, info, iframe_url = app.previous_record()
iframe_html = f'<iframe src="{iframe_url}" width="100%" height="900px" style="border-radius:8px;"></iframe>'
return iframe_html, url_display, category, info
def handle_category_change(category):
status, csv_content = app.save_category(category)
return status, csv_content
def handle_export():
csv_content = app.export_results()
if csv_content:
with open("results.csv", "w", encoding="utf-8") as f:
f.write(csv_content)
return gr.File(value="results.csv", visible=True)
return gr.File(visible=False)
def refresh_table():
return pd.DataFrame(app.results_data)
connect_btn.click(
handle_connect,
inputs=[sheet_url_input],
outputs=[connection_status, website_viewer, current_url_display, category_dropdown, record_info]
)
next_btn.click(lambda: handle_navigation("next"),
outputs=[website_viewer, current_url_display, category_dropdown, record_info])
prev_btn.click(lambda: handle_navigation("previous"),
outputs=[website_viewer, current_url_display, category_dropdown, record_info])
category_dropdown.change(handle_category_change,
inputs=[category_dropdown],
outputs=[save_status, csv_data])
export_btn.click(handle_export, outputs=[export_file])
refresh_table_btn.click(refresh_table, outputs=[table_view])
# JS для стрелок
gr.HTML("""
<script>
document.addEventListener('keydown', function(event) {
if (event.key === "ArrowRight") {
document.getElementById('next-btn')?.click();
}
if (event.key === "ArrowLeft") {
document.getElementById('prev-btn')?.click();
}
});
</script>
""")
if __name__ == "__main__":
demo.launch()
|