File size: 14,119 Bytes
0ef6bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810f098
5bc7e2e
0ef6bf3
 
 
 
5bc7e2e
0ef6bf3
5bc7e2e
0ef6bf3
5bc7e2e
0ef6bf3
5bc7e2e
0ef6bf3
 
 
 
1facdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef6bf3
 
 
 
1facdab
0ef6bf3
 
 
1facdab
0ef6bf3
1facdab
 
 
 
 
 
 
 
 
 
0ef6bf3
 
1facdab
0ef6bf3
1facdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef6bf3
 
 
1facdab
0ef6bf3
 
 
1facdab
0ef6bf3
1facdab
0ef6bf3
 
1facdab
0ef6bf3
 
5bc7e2e
1facdab
0ef6bf3
 
1facdab
0ef6bf3
1facdab
0ef6bf3
 
 
 
 
 
 
 
 
 
 
 
 
 
5bc7e2e
0ef6bf3
 
 
 
 
 
 
5bc7e2e
0ef6bf3
 
 
 
5bc7e2e
0ef6bf3
 
 
 
 
5bc7e2e
0ef6bf3
 
 
 
 
 
 
 
 
5bc7e2e
 
0ef6bf3
 
 
 
 
 
 
 
5bc7e2e
0ef6bf3
 
 
 
 
5bc7e2e
 
 
0ef6bf3
5bc7e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef6bf3
5bc7e2e
0ef6bf3
 
 
cf30d53
 
 
 
 
 
 
 
 
0ef6bf3
 
5bc7e2e
0ef6bf3
cf30d53
 
55f04f3
 
 
 
5bc7e2e
55f04f3
 
 
 
 
 
 
 
5bc7e2e
55f04f3
 
 
 
 
 
 
0ef6bf3
cf30d53
0ef6bf3
 
 
 
 
5bc7e2e
 
0ef6bf3
 
5bc7e2e
 
0ef6bf3
 
 
 
 
 
 
 
 
5bc7e2e
 
 
0ef6bf3
 
 
 
 
 
5bc7e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef6bf3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import gradio as gr
import pandas as pd
import io
from typing import List, Optional, Tuple
import logging

# Настройка логирования
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class WebsiteCategorizerApp:
    def __init__(self):
        self.sheet_url = ""
        self.sheet_data = []
        self.current_index = 0
        self.categories = ["NEWS/BLOG", "E-commerce", "OTHER", "COMPANIES", "Short"]
        self.results_data = []

    def convert_google_sheet_url(self, sheet_url: str) -> str:
        try:
            if "/edit#gid=" in sheet_url:
                return sheet_url.replace("/edit#gid=", "/export?format=csv&gid=")
            elif "/edit?usp=sharing" in sheet_url:
                return sheet_url.replace("/edit?usp=sharing", "/export?format=csv")
            elif "/edit" in sheet_url:
                return sheet_url.replace("/edit", "/export?format=csv")
            else:
                return sheet_url
        except Exception as e:
            logger.error(f"Ошибка конвертации URL: {e}")
            return ""

    # def connect_to_sheet(self, sheet_url: str) -> Tuple[str, str]:
    #     try:
    #         if not sheet_url:
    #             return "❌ Ошибка: Введите URL Google таблицы", ""

    #         csv_url = self.convert_google_sheet_url(sheet_url)
    #         if not csv_url:
    #             return "❌ Ошибка: Неверный формат URL", ""

    #         df = pd.read_csv(csv_url)
    #         if df.empty:
    #             return "❌ Ошибка: Таблица пуста", ""

    #         if len(df.columns) < 2:
    #             return "❌ Ошибка: Нужно минимум 2 столбца (URL и категория)", ""

    #         self.sheet_data = []
    #         self.results_data = []

    #         url_column = df.columns[0]
    #         category_column = df.columns[1]

    #         for index, row in df.iterrows():
    #             url = str(row[url_column]).strip() if pd.notna(row[url_column]) else ""
    #             category = str(row[category_column]).strip() if pd.notna(row[category_column]) else ""

    #             if url and url.lower() not in ['url', 'nan']:
    #                 self.sheet_data.append({
    #                     "index": index,
    #                     "url": url,
    #                     "category": category if category.lower() != 'nan' else ""
    #                 })
    #                 self.results_data.append({
    #                     "url": url,
    #                     "category": category if category.lower() != 'nan' else ""
    #                 })

    #         if not self.sheet_data:
    #             return "❌ Ошибка: Не найдены валидные URL", ""

    #         self.current_index = 0
    #         self.sheet_url = sheet_url

    #         return f"✅ Подключено успешно! Найдено {len(self.sheet_data)} записей", self.get_current_url_for_display()

    #     except Exception as e:
    #         logger.error(f"Ошибка подключения к таблице: {e}")
    #         return f"❌ Ошибка: {str(e)}\n\nУбедитесь что таблица публичная и URL корректный", ""

    def connect_to_sheet(self, sheet_url: str) -> Tuple[str, str]:
        try:
            if not sheet_url:
                return "❌ Ошибка: Введите URL Google таблицы", ""
    
            csv_url = self.convert_google_sheet_url(sheet_url)
            if not csv_url:
                return "❌ Ошибка: Неверный формат URL", ""
    
            df = pd.read_csv(csv_url)
            if df.empty or df.shape[1] < 1:
                return "❌ Ошибка: Таблица пуста или нет данных", ""
    
            # Always use column A for URL/title
            url_column = df.columns[0]
    
            # Find category column (case-insensitive match for 'category')
            category_col_candidates = [c for c in df.columns if str(c).strip().lower() == "category"]
            category_column = category_col_candidates[0] if category_col_candidates else None
    
            self.sheet_data = []
            self.results_data = []
    
            for index, row in df.iterrows():
                raw_value = str(row[url_column]).strip() if pd.notna(row[url_column]) else ""
                if not raw_value:
                    continue
    
                # Detect if it's URL or title
                if raw_value.lower().startswith("http"):
                    url = raw_value
                else:
                    # treat as title → skip until we find an actual URL? (optional)
                    url = ""
                
                # Category (if exists)
                category = ""
                if category_column and pd.notna(row[category_column]):
                    category = str(row[category_column]).strip()
    
                # Only add if URL is valid
                if url:
                    self.sheet_data.append({
                        "index": index,
                        "url": url,
                        "category": category
                    })
                    self.results_data.append({
                        "url": url,
                        "category": category
                    })
    
            if not self.sheet_data:
                return "❌ Ошибка: Не найдены валидные URL", ""
    
            self.current_index = 0
            self.sheet_url = sheet_url
            return f"✅ Подключено успешно! Найдено {len(self.sheet_data)} записей", self.get_current_url_for_display()
    
        except Exception as e:
            logger.error(f"Ошибка подключения к таблице: {e}")
            return f"❌ Ошибка: {str(e)}", ""

    
    def get_current_url_for_display(self) -> str:
        if not self.sheet_data or self.current_index >= len(self.sheet_data):
            return ""
        url = self.sheet_data[self.current_index]["url"]
        if url and not url.startswith(("http://", "https://")):
            url = "http://" + url
        return url

    def get_current_info(self) -> Tuple[str, str, str]:
        if not self.sheet_data:
            return "", "", "Нет данных"
        if self.current_index >= len(self.sheet_data):
            self.current_index = 0
        current = self.sheet_data[self.current_index]
        return current["url"], current["category"], f"{self.current_index + 1}/{len(self.sheet_data)}"

    def navigate_to_index(self, index: int) -> Tuple[str, str, str, str]:
        if not self.sheet_data:
            return "", "", "", "Нет данных"
        index = max(0, min(index, len(self.sheet_data) - 1))
        self.current_index = index
        url, category, info = self.get_current_info()
        return url, category, info, self.get_current_url_for_display()

    def previous_record(self) -> Tuple[str, str, str, str]:
        if not self.sheet_data:
            return "", "", "", "Нет данных"
        self.current_index = (self.current_index - 1) % len(self.sheet_data)
        return self.navigate_to_index(self.current_index)

    def next_record(self) -> Tuple[str, str, str, str]:
        if not self.sheet_data:
            return "", "", "", "Нет данных"
        self.current_index = (self.current_index + 1) % len(self.sheet_data)
        return self.navigate_to_index(self.current_index)

    def save_category(self, category: str) -> Tuple[str, str]:
        if not self.sheet_data:
            return "❌ Нет данных для сохранения", ""
        try:
            self.sheet_data[self.current_index]["category"] = category
            self.results_data[self.current_index]["category"] = category
            csv_buffer = io.StringIO()
            pd.DataFrame(self.results_data).to_csv(csv_buffer, index=False, encoding='utf-8')
            return f"✅ '{category}' сохранено", csv_buffer.getvalue()
        except Exception as e:
            logger.error(f"Ошибка сохранения категории: {e}")
            return f"❌ Ошибка: {str(e)}", ""

    def export_results(self) -> str:
        if not self.results_data:
            return ""
        csv_buffer = io.StringIO()
        pd.DataFrame(self.results_data).to_csv(csv_buffer, index=False, encoding='utf-8')
        return csv_buffer.getvalue()

app = WebsiteCategorizerApp()

with gr.Blocks(title="Категоризатор сайтов", theme=gr.themes.Soft()) as demo:
    gr.HTML("<h2 style='text-align:center;'>🌐 Категоризатор сайтов</h2>")
    with gr.Tabs():
        with gr.TabItem("Категоризация"):
            with gr.Row():
                with gr.Column(scale=1):
                    sheet_url_input = gr.Textbox(label="URL Google таблицы", lines=2)
                    connect_btn = gr.Button("🔗 Подключить", variant="primary")
                    connection_status = gr.HTML("")
                    with gr.Row():
                        prev_btn = gr.Button("⬅️", elem_id="prev-btn")
                        next_btn = gr.Button("➡️", elem_id="next-btn")
                    record_info = gr.HTML("")
                    current_url_display = gr.Textbox(label="Текущий URL", interactive=False)
                    category_dropdown = gr.Dropdown(choices=app.categories, label="Категория")
                    save_status = gr.HTML("")
                    export_btn = gr.Button("📥 Скачать CSV")
                    export_file = gr.File(visible=False)
                with gr.Column(scale=5):
                    website_viewer = gr.HTML("""
                        <div style='height:900px;display:flex;align-items:center;justify-content:center;background:#eee;border-radius:8px;'>
                            <p>Подключите Google таблицу</p>
                        </div>
                    """)

        with gr.TabItem("Текущая таблица"):
            table_view = gr.DataFrame(
                value=pd.DataFrame(app.results_data),
                headers=["url", "category"],
                datatype=["str", "str"],
                interactive=True
            )
            refresh_table_btn = gr.Button("🔄 Обновить таблицу")

    csv_data = gr.State("")

    # def handle_connect(url):
    #     status, iframe_url = app.connect_to_sheet(url)
    #     if "✅" in status:
    #         url_display, category, info = app.get_current_info()
    #         iframe_html = f'<iframe src="{iframe_url}" width="100%" height="900px" style="border-radius:8px;"></iframe>'
    #         return status, iframe_html, url_display, category, info
    #     else:
    #         return status, website_viewer.value, "", "", ""

    def handle_connect(url):
        status, iframe_url = app.connect_to_sheet(url)
        if "✅" in status:
            url_display, category, info = app.get_current_info()
    
            # dynamically merge categories from data
            all_categories = list(set(app.categories + [
                c for c in (row["category"] for row in app.results_data) if c
            ]))
    
            iframe_html = f'<iframe src="{iframe_url}" width="100%" height="900px" style="border-radius:8px;"></iframe>'
    
            return (
                status,
                iframe_html,
                url_display,
                gr.update(choices=all_categories, value=category),
                info
            )
        else:
            return (
                status,
                website_viewer.value,
                "",
                gr.update(choices=app.categories, value=None),
                ""
            )

    
    def handle_navigation(direction):
        if direction == "next":
            url_display, category, info, iframe_url = app.next_record()
        else:
            url_display, category, info, iframe_url = app.previous_record()
        iframe_html = f'<iframe src="{iframe_url}" width="100%" height="900px" style="border-radius:8px;"></iframe>'
        return iframe_html, url_display, category, info

    def handle_category_change(category):
        status, csv_content = app.save_category(category)
        return status, csv_content

    def handle_export():
        csv_content = app.export_results()
        if csv_content:
            with open("results.csv", "w", encoding="utf-8") as f:
                f.write(csv_content)
            return gr.File(value="results.csv", visible=True)
        return gr.File(visible=False)

    def refresh_table():
        return pd.DataFrame(app.results_data)

    connect_btn.click(
        handle_connect,
        inputs=[sheet_url_input],
        outputs=[connection_status, website_viewer, current_url_display, category_dropdown, record_info]
    )

    next_btn.click(lambda: handle_navigation("next"),
                   outputs=[website_viewer, current_url_display, category_dropdown, record_info])
    prev_btn.click(lambda: handle_navigation("previous"),
                   outputs=[website_viewer, current_url_display, category_dropdown, record_info])
    category_dropdown.change(handle_category_change,
                              inputs=[category_dropdown],
                              outputs=[save_status, csv_data])
    export_btn.click(handle_export, outputs=[export_file])
    refresh_table_btn.click(refresh_table, outputs=[table_view])

    # JS для стрелок
    gr.HTML("""
    <script>
    document.addEventListener('keydown', function(event) {
        if (event.key === "ArrowRight") {
            document.getElementById('next-btn')?.click();
        }
        if (event.key === "ArrowLeft") {
            document.getElementById('prev-btn')?.click();
        }
    });
    </script>
    """)

if __name__ == "__main__":
    demo.launch()