Spaces:
Sleeping
Sleeping
File size: 51,830 Bytes
67fa2c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 |
#!/usr/bin/env python3
"""
Advanced CSV Manipulation Tool with Gradio Interface
Commercial-ready application for powerful CSV data processing
Features:
- File upload with 1GB limit
- Data preview with selectable rows
- Value replacement based on conditions
- CSV concatenation with column selection
- Advanced statistical analysis and visualization
- Data validation and quality checks
- Export to CSV, Excel, JSON
- Batch operations and operation recipes
- Undo/Redo functionality
- Memory-efficient large file processing
"""
import gradio as gr
import pandas as pd
import numpy as np
import json
import io
import zipfile
from datetime import datetime, timedelta
import re
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import warnings
import os
from typing import Dict, List, Tuple, Optional, Any
import hashlib
import pickle
from pathlib import Path
warnings.filterwarnings('ignore')
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")
class CSVProcessor:
"""Advanced CSV processing class with state management and history"""
def __init__(self):
self.original_df = None
self.current_df = None
self.history = []
self.recipes = {}
self.batch_files = []
def load_data(self, file, preview_rows=100, encoding='utf-8'):
"""Load data file with error handling and memory optimization"""
try:
if file is None:
return None, "No file provided"
file_path = file.name if hasattr(file, 'name') else str(file)
file_extension = Path(file_path).suffix.lower()
# Chunked reading for large files
if file_extension == '.csv':
# Try different encodings
encodings = [encoding, 'utf-8', 'latin-1', 'cp1252']
df = None
for enc in encodings:
try:
df = pd.read_csv(file_path, encoding=enc, low_memory=False)
break
except UnicodeDecodeError:
continue
if df is None:
return None, "Failed to decode file with supported encodings"
elif file_extension in ['.xlsx', '.xls']:
df = pd.read_excel(file_path)
elif file_extension == '.json':
df = pd.read_json(file_path)
elif file_extension == '.parquet':
df = pd.read_parquet(file_path)
else:
return None, f"Unsupported file format: {file_extension}"
self.original_df = df.copy()
self.current_df = df.copy()
self.history = []
# Create preview
if preview_rows > 0:
preview = df.head(preview_rows)
else:
preview = df
# Memory and performance info
memory_mb = df.memory_usage(deep=True).sum() / 1024**2
info = {
'rows': len(df),
'columns': len(df.columns),
'memory_usage': f"{memory_mb:.2f} MB",
'dtypes': dict(df.dtypes.astype(str)),
'null_counts': dict(df.isnull().sum()),
'duplicates': df.duplicated().sum()
}
success_msg = f"β
File loaded successfully!\n"
success_msg += f"π {info['rows']:,} rows Γ {info['columns']} columns\n"
success_msg += f"πΎ Memory usage: {info['memory_usage']}\n"
success_msg += f"π Duplicates: {info['duplicates']:,}\n"
success_msg += f"β Missing values: {sum(info['null_counts'].values()):,}"
return preview, success_msg, info
except Exception as e:
return None, f"β Error loading file: {str(e)}", {}
def save_state(self, operation_name: str):
"""Save current state to history with memory management"""
if len(self.history) > 50: # Limit history to prevent memory issues
self.history = self.history[-25:] # Keep last 25 operations
self.history.append({
'operation': operation_name,
'timestamp': datetime.now(),
'df': self.current_df.copy() if self.current_df is not None else None
})
def undo_operation(self):
"""Undo last operation"""
if len(self.history) > 1:
self.history.pop()
self.current_df = self.history[-1]['df'].copy()
return self.current_df, f"β
Undone: {self.history[-1]['operation']}"
elif len(self.history) == 1:
self.current_df = self.original_df.copy()
self.history = []
return self.current_df, "β
Reset to original data"
else:
return self.current_df, "β No operations to undo"
def reset_to_original(self):
"""Reset to original data"""
if self.original_df is not None:
self.current_df = self.original_df.copy()
self.history = []
return self.current_df, "β
Reset to original data"
return None, "β No original data available"
# Global processor instance
processor = CSVProcessor()
def create_download_file(df: pd.DataFrame, format_type: str, filename: str = "processed_data"):
"""Create downloadable file in specified format"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename_with_timestamp = f"{filename}_{timestamp}"
try:
if format_type == "csv":
csv_data = df.to_csv(index=False)
return csv_data, f"{filename_with_timestamp}.csv"
elif format_type == "excel":
buffer = io.BytesIO()
with pd.ExcelWriter(buffer, engine='openpyxl') as writer:
df.to_excel(writer, index=False, sheet_name='Data')
buffer.seek(0)
return buffer.getvalue(), f"{filename_with_timestamp}.xlsx"
elif format_type == "json":
json_data = df.to_json(orient='records', indent=2, date_format='iso')
return json_data, f"{filename_with_timestamp}.json"
except Exception as e:
return None, f"Error creating {format_type} file: {str(e)}"
def get_data_info(df: pd.DataFrame) -> str:
"""Get comprehensive data information"""
if df is None or df.empty:
return "No data loaded"
info_dict = {
'π Shape': f"{df.shape[0]:,} rows Γ {df.shape[1]} columns",
'πΎ Memory': f"{df.memory_usage(deep=True).sum() / 1024**2:.2f} MB",
'π Duplicates': f"{df.duplicated().sum():,}",
'β Missing Values': f"{df.isnull().sum().sum():,}",
'π Numeric Columns': f"{len(df.select_dtypes(include=[np.number]).columns)}",
'π Text Columns': f"{len(df.select_dtypes(include=['object']).columns)}",
'π
Date Columns': f"{len(df.select_dtypes(include=['datetime64']).columns)}"
}
return "\n".join([f"{k}: {v}" for k, v in info_dict.items()])
def get_column_options(df: pd.DataFrame) -> List[str]:
"""Get list of column names for dropdowns"""
return list(df.columns) if df is not None else []
# ===========================================
# CORE DATA MANIPULATION FUNCTIONS
# ===========================================
def rename_values_conditional(df: pd.DataFrame, target_col: str, condition_col: str,
condition_value: str, new_value: str, match_type: str = "exact") -> Tuple[pd.DataFrame, str]:
"""Rename values in target column based on condition in another column"""
try:
if df is None or df.empty:
return df, "β No data available"
if target_col not in df.columns or condition_col not in df.columns:
return df, "β One or more columns not found"
df_result = df.copy()
if match_type == "exact":
mask = df_result[condition_col] == condition_value
elif match_type == "contains":
mask = df_result[condition_col].astype(str).str.contains(condition_value, na=False)
elif match_type == "regex":
mask = df_result[condition_col].astype(str).str.match(condition_value, na=False)
elif match_type == "starts_with":
mask = df_result[condition_col].astype(str).str.startswith(condition_value, na=False)
elif match_type == "ends_with":
mask = df_result[condition_col].astype(str).str.endswith(condition_value, na=False)
affected_rows = mask.sum()
df_result.loc[mask, target_col] = new_value
processor.current_df = df_result
processor.save_state(f"Renamed values in '{target_col}' based on '{condition_col}'")
return df_result, f"β
Updated {affected_rows:,} rows in column '{target_col}'"
except Exception as e:
return df, f"β Error: {str(e)}"
def concatenate_csvs(files: List, selected_columns: str, join_type: str = "outer") -> Tuple[pd.DataFrame, str]:
"""Concatenate multiple CSV files with column selection"""
try:
if not files:
return None, "β No files provided"
dfs = []
columns_to_use = [col.strip() for col in selected_columns.split(",") if col.strip()] if selected_columns else None
for file in files:
if hasattr(file, 'name'):
file_path = file.name
if file_path.endswith('.csv'):
df = pd.read_csv(file_path, encoding='utf-8', low_memory=False)
elif file_path.endswith(('.xlsx', '.xls')):
df = pd.read_excel(file_path)
else:
continue
# Select specific columns if specified
if columns_to_use:
available_cols = [col for col in columns_to_use if col in df.columns]
if available_cols:
df = df[available_cols]
else:
continue
# Add source file identifier
df['_source_file'] = Path(file_path).stem
dfs.append(df)
if not dfs:
return None, "β No valid files found or columns don't exist"
# Concatenate with specified join type
if join_type == "inner":
result_df = pd.concat(dfs, ignore_index=True, join='inner')
else:
result_df = pd.concat(dfs, ignore_index=True, join='outer')
processor.current_df = result_df
processor.save_state(f"Concatenated {len(dfs)} files")
return result_df, f"β
Successfully concatenated {len(dfs)} files with {len(result_df):,} total rows"
except Exception as e:
return None, f"β Error concatenating files: {str(e)}"
def get_value_counts(df: pd.DataFrame, column: str, top_n: int = 20, normalize: bool = False) -> Tuple[pd.DataFrame, str]:
"""Get value counts for specified column"""
try:
if df is None or df.empty:
return None, "β No data available"
if column not in df.columns:
return None, f"β Column '{column}' not found"
value_counts = df[column].value_counts(normalize=normalize, dropna=False).head(top_n)
# Convert to DataFrame for better display
result_df = pd.DataFrame({
'Value': value_counts.index,
'Count' if not normalize else 'Percentage': value_counts.values
})
if normalize:
result_df['Percentage'] = result_df['Percentage'].map(lambda x: f"{x:.2%}")
return result_df, f"β
Value counts for '{column}' (Top {min(top_n, len(result_df))})"
except Exception as e:
return None, f"β Error: {str(e)}"
def filter_data(df: pd.DataFrame, column: str, condition: str, value: str) -> Tuple[pd.DataFrame, str]:
"""Filter data based on conditions"""
try:
if df is None or df.empty:
return df, "β No data available"
if column not in df.columns:
return df, f"β Column '{column}' not found"
df_result = df.copy()
if condition == "equals":
mask = df_result[column] == value
elif condition == "not_equals":
mask = df_result[column] != value
elif condition == "contains":
mask = df_result[column].astype(str).str.contains(value, na=False)
elif condition == "not_contains":
mask = ~df_result[column].astype(str).str.contains(value, na=False)
elif condition == "starts_with":
mask = df_result[column].astype(str).str.startswith(value, na=False)
elif condition == "ends_with":
mask = df_result[column].astype(str).str.endswith(value, na=False)
elif condition == "greater_than":
mask = pd.to_numeric(df_result[column], errors='coerce') > float(value)
elif condition == "less_than":
mask = pd.to_numeric(df_result[column], errors='coerce') < float(value)
elif condition == "is_null":
mask = df_result[column].isnull()
elif condition == "is_not_null":
mask = df_result[column].notnull()
else:
return df, f"β Unknown condition: {condition}"
filtered_df = df_result[mask]
processor.current_df = filtered_df
processor.save_state(f"Filtered data: {column} {condition} {value}")
return filtered_df, f"β
Filtered to {len(filtered_df):,} rows (removed {len(df) - len(filtered_df):,} rows)"
except Exception as e:
return df, f"β Error: {str(e)}"
def handle_missing_values(df: pd.DataFrame, column: str, method: str, fill_value: str = "") -> Tuple[pd.DataFrame, str]:
"""Handle missing values in specified column"""
try:
if df is None or df.empty:
return df, "β No data available"
if column != "ALL" and column not in df.columns:
return df, f"β Column '{column}' not found"
df_result = df.copy()
columns_to_process = [column] if column != "ALL" else df_result.columns.tolist()
total_missing_before = df_result.isnull().sum().sum()
for col in columns_to_process:
if method == "drop_rows":
df_result = df_result.dropna(subset=[col])
elif method == "fill_value":
df_result[col] = df_result[col].fillna(fill_value)
elif method == "fill_mean":
if df_result[col].dtype in ['int64', 'float64']:
df_result[col] = df_result[col].fillna(df_result[col].mean())
elif method == "fill_median":
if df_result[col].dtype in ['int64', 'float64']:
df_result[col] = df_result[col].fillna(df_result[col].median())
elif method == "fill_mode":
mode_val = df_result[col].mode()
if len(mode_val) > 0:
df_result[col] = df_result[col].fillna(mode_val[0])
elif method == "forward_fill":
df_result[col] = df_result[col].fillna(method='ffill')
elif method == "backward_fill":
df_result[col] = df_result[col].fillna(method='bfill')
total_missing_after = df_result.isnull().sum().sum()
processor.current_df = df_result
processor.save_state(f"Handle missing values: {method}")
return df_result, f"β
Processed missing values. Before: {total_missing_before:,}, After: {total_missing_after:,}"
except Exception as e:
return df, f"β Error: {str(e)}"
def detect_and_remove_duplicates(df: pd.DataFrame, columns: str = "", keep: str = "first") -> Tuple[pd.DataFrame, str]:
"""Detect and remove duplicate rows"""
try:
if df is None or df.empty:
return df, "β No data available"
df_result = df.copy()
# Parse columns
if columns.strip():
cols_list = [col.strip() for col in columns.split(",") if col.strip() in df.columns]
subset = cols_list if cols_list else None
else:
subset = None
duplicates_before = df_result.duplicated(subset=subset).sum()
if duplicates_before == 0:
return df_result, "β
No duplicate rows found"
df_result = df_result.drop_duplicates(subset=subset, keep=keep)
processor.current_df = df_result
processor.save_state(f"Removed {duplicates_before:,} duplicate rows")
return df_result, f"β
Removed {duplicates_before:,} duplicate rows. Remaining: {len(df_result):,} rows"
except Exception as e:
return df, f"β Error: {str(e)}"
def perform_column_operations(df: pd.DataFrame, operation: str, col1: str, col2: str = "",
new_col_name: str = "", constant: str = "") -> Tuple[pd.DataFrame, str]:
"""Perform mathematical and string operations on columns"""
try:
if df is None or df.empty:
return df, "β No data available"
if col1 not in df.columns:
return df, f"β Column '{col1}' not found"
df_result = df.copy()
if not new_col_name:
new_col_name = f"{col1}_{operation}"
if operation == "add":
if col2 and col2 in df.columns:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') + pd.to_numeric(df_result[col2], errors='coerce')
elif constant:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') + float(constant)
elif operation == "subtract":
if col2 and col2 in df.columns:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') - pd.to_numeric(df_result[col2], errors='coerce')
elif constant:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') - float(constant)
elif operation == "multiply":
if col2 and col2 in df.columns:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') * pd.to_numeric(df_result[col2], errors='coerce')
elif constant:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') * float(constant)
elif operation == "divide":
if col2 and col2 in df.columns:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') / pd.to_numeric(df_result[col2], errors='coerce')
elif constant:
df_result[new_col_name] = pd.to_numeric(df_result[col1], errors='coerce') / float(constant)
elif operation == "concatenate":
if col2 and col2 in df.columns:
df_result[new_col_name] = df_result[col1].astype(str) + " " + df_result[col2].astype(str)
elif constant:
df_result[new_col_name] = df_result[col1].astype(str) + constant
elif operation == "extract_numbers":
df_result[new_col_name] = df_result[col1].astype(str).str.extract(r'(\d+)')[0]
elif operation == "upper":
df_result[new_col_name] = df_result[col1].astype(str).str.upper()
elif operation == "lower":
df_result[new_col_name] = df_result[col1].astype(str).str.lower()
elif operation == "title":
df_result[new_col_name] = df_result[col1].astype(str).str.title()
elif operation == "length":
df_result[new_col_name] = df_result[col1].astype(str).str.len()
else:
return df, f"β Unknown operation: {operation}"
processor.current_df = df_result
processor.save_state(f"Column operation: {operation} on {col1}")
return df_result, f"β
Created new column '{new_col_name}' using {operation} operation"
except Exception as e:
return df, f"β Error: {str(e)}"
def convert_data_types(df: pd.DataFrame, column: str, target_type: str) -> Tuple[pd.DataFrame, str]:
"""Convert column data types"""
try:
if df is None or df.empty:
return df, "β No data available"
if column not in df.columns:
return df, f"β Column '{column}' not found"
df_result = df.copy()
if target_type == "string":
df_result[column] = df_result[column].astype(str)
elif target_type == "integer":
df_result[column] = pd.to_numeric(df_result[column], errors='coerce').astype('Int64')
elif target_type == "float":
df_result[column] = pd.to_numeric(df_result[column], errors='coerce')
elif target_type == "datetime":
df_result[column] = pd.to_datetime(df_result[column], errors='coerce')
elif target_type == "boolean":
df_result[column] = df_result[column].astype(bool)
elif target_type == "category":
df_result[column] = df_result[column].astype('category')
else:
return df, f"β Unknown data type: {target_type}"
processor.current_df = df_result
processor.save_state(f"Converted '{column}' to {target_type}")
return df_result, f"β
Converted column '{column}' to {target_type}"
except Exception as e:
return df, f"β Error: {str(e)}"
# ===========================================
# ANALYSIS AND VISUALIZATION FUNCTIONS
# ===========================================
def generate_statistical_summary(df: pd.DataFrame) -> Tuple[pd.DataFrame, str]:
"""Generate comprehensive statistical summary"""
try:
if df is None or df.empty:
return None, "β No data available"
numeric_cols = df.select_dtypes(include=[np.number]).columns
if len(numeric_cols) == 0:
return None, "β No numeric columns found"
stats_df = df[numeric_cols].describe()
# Add additional statistics
stats_df.loc['variance'] = df[numeric_cols].var()
stats_df.loc['skewness'] = df[numeric_cols].skew()
stats_df.loc['kurtosis'] = df[numeric_cols].kurtosis()
stats_df.loc['missing'] = df[numeric_cols].isnull().sum()
return stats_df.round(4), "β
Statistical summary generated"
except Exception as e:
return None, f"β Error: {str(e)}"
def create_correlation_matrix(df: pd.DataFrame) -> Tuple[str, str]:
"""Create correlation matrix visualization"""
try:
if df is None or df.empty:
return None, "β No data available"
numeric_cols = df.select_dtypes(include=[np.number]).columns
if len(numeric_cols) < 2:
return None, "β Need at least 2 numeric columns for correlation"
# Calculate correlation matrix
corr_matrix = df[numeric_cols].corr()
# Create heatmap
plt.figure(figsize=(12, 8))
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
sns.heatmap(corr_matrix, mask=mask, annot=True, cmap='coolwarm', center=0,
square=True, linewidths=0.5, cbar_kws={"shrink": 0.8})
plt.title('Correlation Matrix Heatmap', fontsize=16, fontweight='bold')
plt.tight_layout()
# Save plot
plt.savefig('correlation_matrix.png', dpi=300, bbox_inches='tight')
plt.close()
return 'correlation_matrix.png', "β
Correlation matrix created"
except Exception as e:
return None, f"β Error: {str(e)}"
def create_distribution_plots(df: pd.DataFrame, column: str, plot_type: str = "histogram") -> Tuple[str, str]:
"""Create distribution plots"""
try:
if df is None or df.empty:
return None, "β No data available"
if column not in df.columns:
return None, f"β Column '{column}' not found"
plt.figure(figsize=(12, 6))
if plot_type == "histogram":
plt.subplot(1, 2, 1)
df[column].hist(bins=30, edgecolor='black', alpha=0.7)
plt.title(f'Histogram of {column}')
plt.xlabel(column)
plt.ylabel('Frequency')
plt.subplot(1, 2, 2)
df.boxplot(column=column)
plt.title(f'Box Plot of {column}')
elif plot_type == "density":
plt.subplot(1, 2, 1)
df[column].plot(kind='density')
plt.title(f'Density Plot of {column}')
plt.xlabel(column)
plt.subplot(1, 2, 2)
df[column].plot(kind='box')
plt.title(f'Box Plot of {column}')
plt.tight_layout()
plt.savefig(f'distribution_{column}_{plot_type}.png', dpi=300, bbox_inches='tight')
plt.close()
return f'distribution_{column}_{plot_type}.png', f"β
Distribution plot created for {column}"
except Exception as e:
return None, f"β Error: {str(e)}"
# ===========================================
# GRADIO INTERFACE SETUP
# ===========================================
def create_interface():
"""Create the main Gradio interface"""
with gr.Blocks(title="Advanced CSV Manipulation Tool", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; padding: 20px;">
<h1 style="color: #2e7d32; margin-bottom: 10px;">π₯ Advanced CSV Manipulation Tool</h1>
<p style="font-size: 18px; color: #666;">Commercial-ready data processing with advanced analytics</p>
<hr style="margin: 20px 0;">
</div>
""")
# Global state variables
current_data = gr.State(None)
data_info = gr.State({})
with gr.Tabs():
# ===== FILE UPLOAD TAB =====
with gr.TabItem("π File Upload & Preview"):
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload CSV/Excel/JSON file (Max 1GB)",
file_types=[".csv", ".xlsx", ".xls", ".json"],
file_count="single"
)
preview_rows = gr.Slider(
minimum=0,
maximum=1000,
value=100,
step=50,
label="Preview Rows (0 = All)",
info="Number of rows to display in preview"
)
upload_btn = gr.Button("π Load & Analyze Data", variant="primary", size="lg")
with gr.Column(scale=2):
upload_status = gr.Textbox(label="Status", lines=5, interactive=False)
data_info_display = gr.Textbox(label="Data Information", lines=8, interactive=False)
data_preview = gr.DataFrame(label="Data Preview", interactive=False, height=400)
def load_file_handler(file, rows):
if file is None:
return None, "Please upload a file first", "", None, {}
preview, status, info = processor.load_data(file, rows)
info_text = get_data_info(processor.current_df) if processor.current_df is not None else ""
return preview, status, info_text, processor.current_df, info
upload_btn.click(
load_file_handler,
inputs=[file_upload, preview_rows],
outputs=[data_preview, upload_status, data_info_display, current_data, data_info]
)
# ===== VALUE REPLACEMENT TAB =====
with gr.TabItem("π Value Replacement"):
gr.HTML("<h3>Replace values in one column based on conditions in another column</h3>")
with gr.Row():
with gr.Column():
target_col = gr.Dropdown(label="Target Column (to modify)", choices=[], interactive=True)
condition_col = gr.Dropdown(label="Condition Column (to check)", choices=[], interactive=True)
condition_value = gr.Textbox(label="Condition Value", placeholder="Value to match in condition column")
new_value = gr.Textbox(label="New Value", placeholder="Replacement value for target column")
match_type = gr.Radio(
choices=["exact", "contains", "starts_with", "ends_with", "regex"],
value="exact",
label="Match Type"
)
replace_btn = gr.Button("π Replace Values", variant="primary")
with gr.Column():
replace_status = gr.Textbox(label="Status", lines=3, interactive=False)
# Update column choices when data changes
def update_columns(df):
if df is not None:
cols = list(df.columns)
return gr.Dropdown(choices=cols), gr.Dropdown(choices=cols)
return gr.Dropdown(choices=[]), gr.Dropdown(choices=[])
current_data.change(
update_columns,
inputs=[current_data],
outputs=[target_col, condition_col]
)
def replace_values_handler(df, tcol, ccol, cval, nval, mtype):
if df is None:
return None, "β No data loaded", ""
result_df, status = rename_values_conditional(df, tcol, ccol, cval, nval, mtype)
info_text = get_data_info(result_df) if result_df is not None else ""
return result_df, status, info_text
replace_btn.click(
replace_values_handler,
inputs=[current_data, target_col, condition_col, condition_value, new_value, match_type],
outputs=[current_data, replace_status, data_info_display]
)
# ===== CSV CONCATENATION TAB =====
with gr.TabItem("π CSV Concatenation"):
gr.HTML("<h3>Combine multiple CSV files with column selection</h3>")
with gr.Row():
with gr.Column():
multi_files = gr.File(
label="Upload Multiple Files",
file_types=[".csv", ".xlsx", ".xls"],
file_count="multiple"
)
selected_columns = gr.Textbox(
label="Columns to Include",
placeholder="column1, column2, column3 (leave empty for all)",
info="Comma-separated list of column names"
)
join_type = gr.Radio(
choices=["outer", "inner"],
value="outer",
label="Join Type",
info="Outer: keep all columns, Inner: only common columns"
)
concat_btn = gr.Button("π Concatenate Files", variant="primary")
with gr.Column():
concat_status = gr.Textbox(label="Status", lines=5, interactive=False)
def concat_handler(files, cols, jtype):
if not files:
return None, "β Please upload files first", ""
result_df, status = concatenate_csvs(files, cols, jtype)
info_text = get_data_info(result_df) if result_df is not None else ""
return result_df, status, info_text
concat_btn.click(
concat_handler,
inputs=[multi_files, selected_columns, join_type],
outputs=[current_data, concat_status, data_info_display]
)
# ===== VALUE COUNTS TAB =====
with gr.TabItem("π Value Analysis"):
gr.HTML("<h3>Analyze value frequencies and distributions</h3>")
with gr.Row():
with gr.Column():
analysis_col = gr.Dropdown(label="Column to Analyze", choices=[], interactive=True)
top_n = gr.Slider(minimum=5, maximum=100, value=20, step=5, label="Top N Values")
normalize_counts = gr.Checkbox(label="Show Percentages", value=False)
analyze_btn = gr.Button("π Analyze Values", variant="primary")
with gr.Column():
analysis_status = gr.Textbox(label="Status", lines=3, interactive=False)
analysis_results = gr.DataFrame(label="Value Counts", height=400)
# Update analysis column choices
current_data.change(
lambda df: gr.Dropdown(choices=list(df.columns) if df is not None else []),
inputs=[current_data],
outputs=[analysis_col]
)
def analysis_handler(df, col, n, norm):
if df is None:
return None, "β No data loaded"
return get_value_counts(df, col, n, norm)
analyze_btn.click(
analysis_handler,
inputs=[current_data, analysis_col, top_n, normalize_counts],
outputs=[analysis_results, analysis_status]
)
# ===== DATA CLEANING TAB =====
with gr.TabItem("π§Ή Data Cleaning"):
gr.HTML("<h3>Clean and preprocess your data</h3>")
with gr.Tabs():
# Missing Values
with gr.TabItem("Missing Values"):
with gr.Row():
with gr.Column():
missing_col = gr.Dropdown(label="Column", choices=["ALL"], value="ALL", interactive=True)
missing_method = gr.Radio(
choices=["drop_rows", "fill_value", "fill_mean", "fill_median", "fill_mode", "forward_fill", "backward_fill"],
value="drop_rows",
label="Method"
)
fill_value_input = gr.Textbox(label="Fill Value", placeholder="For fill_value method")
missing_btn = gr.Button("π§Ή Handle Missing Values", variant="primary")
with gr.Column():
missing_status = gr.Textbox(label="Status", lines=4, interactive=False)
# Duplicates
with gr.TabItem("Duplicates"):
with gr.Row():
with gr.Column():
duplicate_cols = gr.Textbox(
label="Columns to Check",
placeholder="column1, column2 (empty = all columns)"
)
keep_method = gr.Radio(
choices=["first", "last", "false"],
value="first",
label="Keep Method"
)
duplicate_btn = gr.Button("ποΈ Remove Duplicates", variant="primary")
with gr.Column():
duplicate_status = gr.Textbox(label="Status", lines=4, interactive=False)
# Data Filtering
with gr.TabItem("Filtering"):
with gr.Row():
with gr.Column():
filter_col = gr.Dropdown(label="Column", choices=[], interactive=True)
filter_condition = gr.Dropdown(
choices=["equals", "not_equals", "contains", "not_contains", "starts_with", "ends_with",
"greater_than", "less_than", "is_null", "is_not_null"],
value="equals",
label="Condition"
)
filter_value = gr.Textbox(label="Value")
filter_btn = gr.Button("π Filter Data", variant="primary")
with gr.Column():
filter_status = gr.Textbox(label="Status", lines=4, interactive=False)
# Update dropdown choices
current_data.change(
lambda df: (
gr.Dropdown(choices=["ALL"] + list(df.columns) if df is not None else ["ALL"]),
gr.Dropdown(choices=list(df.columns) if df is not None else [])
),
inputs=[current_data],
outputs=[missing_col, filter_col]
)
# Event handlers
missing_btn.click(
lambda df, col, method, val: handle_missing_values(df, col, method, val)[1] if df is not None else "β No data",
inputs=[current_data, missing_col, missing_method, fill_value_input],
outputs=[missing_status]
).then(
lambda: processor.current_df,
outputs=[current_data]
).then(
lambda df: get_data_info(df),
inputs=[current_data],
outputs=[data_info_display]
)
duplicate_btn.click(
lambda df, cols, keep: detect_and_remove_duplicates(df, cols, keep)[1] if df is not None else "β No data",
inputs=[current_data, duplicate_cols, keep_method],
outputs=[duplicate_status]
).then(
lambda: processor.current_df,
outputs=[current_data]
).then(
lambda df: get_data_info(df),
inputs=[current_data],
outputs=[data_info_display]
)
filter_btn.click(
lambda df, col, cond, val: filter_data(df, col, cond, val)[1] if df is not None else "β No data",
inputs=[current_data, filter_col, filter_condition, filter_value],
outputs=[filter_status]
).then(
lambda: processor.current_df,
outputs=[current_data]
).then(
lambda df: get_data_info(df),
inputs=[current_data],
outputs=[data_info_display]
)
# ===== COLUMN OPERATIONS TAB =====
with gr.TabItem("βοΈ Column Operations"):
gr.HTML("<h3>Perform operations on columns</h3>")
with gr.Row():
with gr.Column():
op_type = gr.Dropdown(
choices=["add", "subtract", "multiply", "divide", "concatenate",
"extract_numbers", "upper", "lower", "title", "length"],
value="add",
label="Operation"
)
op_col1 = gr.Dropdown(label="Primary Column", choices=[], interactive=True)
op_col2 = gr.Dropdown(label="Second Column (optional)", choices=[], interactive=True)
op_constant = gr.Textbox(label="Constant Value (optional)")
op_new_name = gr.Textbox(label="New Column Name")
op_btn = gr.Button("βοΈ Execute Operation", variant="primary")
with gr.Column():
op_status = gr.Textbox(label="Status", lines=5, interactive=False)
# Data type conversion
gr.HTML("<hr><h4>Data Type Conversion</h4>")
convert_col = gr.Dropdown(label="Column", choices=[], interactive=True)
convert_type = gr.Dropdown(
choices=["string", "integer", "float", "datetime", "boolean", "category"],
value="string",
label="Target Type"
)
convert_btn = gr.Button("π Convert Type", variant="secondary")
convert_status = gr.Textbox(label="Conversion Status", lines=2, interactive=False)
# Update column choices
current_data.change(
lambda df: (
gr.Dropdown(choices=list(df.columns) if df is not None else []),
gr.Dropdown(choices=list(df.columns) if df is not None else []),
gr.Dropdown(choices=list(df.columns) if df is not None else [])
),
inputs=[current_data],
outputs=[op_col1, op_col2, convert_col]
)
# Event handlers
def operation_handler(df, op, col1, col2, const, new_name):
if df is None:
return None, "β No data loaded", ""
result_df, status = perform_column_operations(df, op, col1, col2, new_name, const)
info_text = get_data_info(result_df) if result_df is not None else ""
return result_df, status, info_text
op_btn.click(
operation_handler,
inputs=[current_data, op_type, op_col1, op_col2, op_constant, op_new_name],
outputs=[current_data, op_status, data_info_display]
)
def convert_handler(df, col, target_type):
if df is None:
return None, "β No data loaded", ""
result_df, status = convert_data_types(df, col, target_type)
info_text = get_data_info(result_df) if result_df is not None else ""
return result_df, status, info_text
convert_btn.click(
convert_handler,
inputs=[current_data, convert_col, convert_type],
outputs=[current_data, convert_status, data_info_display]
)
# ===== STATISTICS TAB =====
with gr.TabItem("π Statistics & Analysis"):
gr.HTML("<h3>Statistical analysis and insights</h3>")
with gr.Row():
with gr.Column():
stats_btn = gr.Button("π Generate Statistical Summary", variant="primary")
corr_btn = gr.Button("π Create Correlation Matrix", variant="secondary")
# Distribution plots
gr.HTML("<hr><h4>Distribution Analysis</h4>")
dist_col = gr.Dropdown(label="Column", choices=[], interactive=True)
plot_type = gr.Radio(choices=["histogram", "density"], value="histogram", label="Plot Type")
dist_btn = gr.Button("π Create Distribution Plot", variant="secondary")
with gr.Column():
stats_status = gr.Textbox(label="Status", lines=3, interactive=False)
plot_output = gr.Image(label="Visualization")
stats_results = gr.DataFrame(label="Statistical Summary", height=400)
# Update column choices
current_data.change(
lambda df: gr.Dropdown(choices=list(df.select_dtypes(include=[np.number]).columns) if df is not None else []),
inputs=[current_data],
outputs=[dist_col]
)
# Event handlers
stats_btn.click(
lambda df: generate_statistical_summary(df) if df is not None else (None, "β No data"),
inputs=[current_data],
outputs=[stats_results, stats_status]
)
corr_btn.click(
lambda df: create_correlation_matrix(df) if df is not None else (None, "β No data"),
inputs=[current_data],
outputs=[plot_output, stats_status]
)
dist_btn.click(
lambda df, col, ptype: create_distribution_plots(df, col, ptype) if df is not None else (None, "β No data"),
inputs=[current_data, dist_col, plot_type],
outputs=[plot_output, stats_status]
)
# ===== EXPORT TAB =====
with gr.TabItem("πΎ Export & Download"):
gr.HTML("<h3>Export your processed data</h3>")
with gr.Row():
with gr.Column():
export_format = gr.Radio(
choices=["csv", "excel", "json"],
value="csv",
label="Export Format"
)
export_filename = gr.Textbox(
label="Filename (without extension)",
value="processed_data",
placeholder="Enter filename"
)
export_btn = gr.Button("πΎ Create Download File", variant="primary", size="lg")
with gr.Column():
export_status = gr.Textbox(label="Status", lines=3, interactive=False)
download_file = gr.File(label="Download", visible=False)
# History and Undo/Redo
with gr.Row():
with gr.Column():
gr.HTML("<hr><h4>History & Undo Operations</h4>")
undo_btn = gr.Button("βΆ Undo Last Operation", variant="secondary")
reset_btn = gr.Button("π Reset to Original", variant="secondary")
with gr.Column():
history_status = gr.Textbox(label="History Status", lines=3, interactive=False)
def export_handler(df, fmt, filename):
if df is None:
return None, "β No data to export", gr.File(visible=False)
try:
file_data, file_name = create_download_file(df, fmt, filename)
# Save file temporarily
with open(file_name, 'wb' if fmt == 'excel' else 'w', encoding=None if fmt == 'excel' else 'utf-8') as f:
if fmt == 'excel':
f.write(file_data)
else:
f.write(file_data)
return file_name, f"β
File created successfully: {file_name}", gr.File(value=file_name, visible=True)
except Exception as e:
return None, f"β Export error: {str(e)}", gr.File(visible=False)
export_btn.click(
export_handler,
inputs=[current_data, export_format, export_filename],
outputs=[download_file, export_status, download_file]
)
def undo_handler():
result_df, status = processor.undo_operation()
info_text = get_data_info(result_df) if result_df is not None else ""
return result_df, status, info_text
def reset_handler():
result_df, status = processor.reset_to_original()
info_text = get_data_info(result_df) if result_df is not None else ""
return result_df, status, info_text
undo_btn.click(
undo_handler,
outputs=[current_data, history_status, data_info_display]
)
reset_btn.click(
reset_handler,
outputs=[current_data, history_status, data_info_display]
)
# Footer
gr.HTML("""
<div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #ddd;">
<p style="color: #666; font-size: 14px;">
π <strong>Advanced CSV Manipulation Tool</strong> |
Commercial-ready data processing with enterprise features |
Built with Gradio & Python
</p>
</div>
""")
return demo
if __name__ == "__main__":
# Create and launch the interface
demo = create_interface()
demo.launch(
share=True,
inbrowser=True,
server_name="0.0.0.0",
server_port=7860,
max_file_size="1gb"
) |