Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import json | |
| import pandas as pd | |
| import os | |
| from utils import load_and_process_data, create_time_series_plot, display_statistics, call_api | |
| import plotly.express as px | |
| import plotly.graph_objects as go | |
| if 'api_token' not in st.session_state: | |
| st.session_state.api_token = DEFAULT_TOKEN = os.getenv('NILM_API_TOKEN') | |
| page_id = 5 | |
| if 'current_page' not in st.session_state: | |
| st.session_state.current_page = page_id | |
| elif st.session_state.current_page != page_id: | |
| # Clear API response when switching to this page | |
| if 'api_response' in st.session_state: | |
| st.session_state.api_response = None | |
| # Update current page | |
| st.session_state.current_page = page_id | |
| # Initialize session state variables | |
| if 'current_file' not in st.session_state: | |
| st.session_state.current_file = None | |
| if 'json_data' not in st.session_state: | |
| st.session_state.json_data = None | |
| if 'api_response' not in st.session_state: | |
| st.session_state.api_response = None | |
| if 'using_default_file' not in st.session_state: | |
| st.session_state.using_default_file = True | |
| st.title("Energy Consumption Anomaly Detection") | |
| st.markdown(""" | |
| This service analyzes energy consumption patterns to detect anomalies and unusual behavior in your data. | |
| ### Features | |
| - Real-time anomaly detection | |
| - Consumption irregularity identification | |
| - Interactive visualization of detected anomalies | |
| """) | |
| # Default file path | |
| default_file_path = "samples/5_anomaly_detection_consumption.json" # Adjust this path to your default file | |
| # File upload and processing | |
| uploaded_file = st.file_uploader("Upload JSON file (or use default)", type=['json']) | |
| # Load default file if no file is uploaded and using_default_file is True | |
| if uploaded_file is None and st.session_state.using_default_file: | |
| if os.path.exists(default_file_path): | |
| st.info(f"Using default file: {default_file_path}") | |
| with open(default_file_path, 'r') as f: | |
| file_contents = f.read() | |
| if st.session_state.current_file != file_contents: | |
| st.session_state.current_file = file_contents | |
| st.session_state.json_data = json.loads(file_contents) | |
| else: | |
| st.warning(f"Default file not found at: {default_file_path}") | |
| st.session_state.using_default_file = False | |
| # If a file is uploaded, process it | |
| if uploaded_file: | |
| st.session_state.using_default_file = False | |
| try: | |
| file_contents = uploaded_file.read() | |
| st.session_state.current_file = file_contents | |
| st.session_state.json_data = json.loads(file_contents) | |
| except Exception as e: | |
| st.error(f"Error processing file: {str(e)}") | |
| # Process and display data if available | |
| if st.session_state.json_data: | |
| try: | |
| dfs = load_and_process_data(st.session_state.json_data) | |
| if dfs: | |
| st.header("Input Data Analysis") | |
| tabs = st.tabs(["Visualization", "Statistics", "Raw Data"]) | |
| with tabs[0]: | |
| for unit, df in dfs.items(): | |
| st.plotly_chart(create_time_series_plot(df, unit), use_container_width=True) | |
| # Show basic statistical analysis | |
| col1, col2, col3 = st.columns(3) | |
| with col1: | |
| st.metric("Average Consumption", | |
| f"{df['datacellar:value'].mean():.2f} {unit}") | |
| with col2: | |
| st.metric("Standard Deviation", | |
| f"{df['datacellar:value'].std():.2f} {unit}") | |
| with col3: | |
| st.metric("Total Samples", | |
| len(df)) | |
| with tabs[1]: | |
| display_statistics(dfs) | |
| with tabs[2]: | |
| st.json(st.session_state.json_data) | |
| # Add analysis options | |
| st.subheader("Anomaly Detection") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| if st.button("Detect Anomalies", key="detect_button"): | |
| if not st.session_state.api_token: | |
| st.error("Please enter your API token in the sidebar first.") | |
| else: | |
| with st.spinner("Analyzing consumption patterns..."): | |
| # Add sensitivity and window_size to the request | |
| modified_data = st.session_state.json_data.copy() | |
| # Convert back to JSON and call API | |
| modified_content = json.dumps(modified_data).encode('utf-8') | |
| st.session_state.api_response = call_api( | |
| modified_content, | |
| st.session_state.api_token, | |
| "inference_consumption_ad" | |
| ) | |
| except Exception as e: | |
| st.error(f"Error processing data: {str(e)}") | |
| # Display API results | |
| if st.session_state.api_response: | |
| st.header("Anomaly Detection Results") | |
| tabs = st.tabs(["Anomaly Visualization", "Raw Results"]) | |
| with tabs[0]: | |
| response_dfs = load_and_process_data( | |
| st.session_state.api_response, | |
| input_data=st.session_state.json_data | |
| ) | |
| if response_dfs: | |
| anomalies = response_dfs['boolean'] | |
| anomalies = anomalies[anomalies['datacellar:value']==True] | |
| del response_dfs['boolean'] | |
| for unit, df in response_dfs.items(): | |
| fig = create_time_series_plot(df, unit, service_type="Anomaly Detection") | |
| # Get df values for anomalies | |
| anomaly_df = df.iloc[anomalies['datacellar:timeStamp'].index] | |
| fig.add_trace(go.Scatter( | |
| x=anomaly_df['datacellar:timeStamp'], | |
| y=anomaly_df['datacellar:value'], | |
| mode='markers', | |
| marker=dict(color='red'), | |
| name='Anomalies' | |
| )) | |
| # Create visualization with highlighted anomalies | |
| st.plotly_chart( | |
| fig, | |
| use_container_width=True | |
| ) | |
| with tabs[1]: | |
| st.json(st.session_state.api_response) |