Commit
Β·
0d5a7ab
1
Parent(s):
5a24282
First commit
Browse files- .gitignore +19 -0
- README.md +3 -3
- app.py +49 -0
- requirements.txt +2 -0
- sections/demo_section.html +13 -0
- sections/project_description.html +43 -0
- sections/styles/blocks.css +39 -0
- sections/try_it_yourself.html +10 -0
- sections/welcome_section.html +5 -0
- src/visualization.py +20 -0
.gitignore
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*.pyo
|
5 |
+
*.pyd
|
6 |
+
*.env
|
7 |
+
*.venv
|
8 |
+
*.egg
|
9 |
+
*.egg-info/
|
10 |
+
dist/
|
11 |
+
build/
|
12 |
+
*.log
|
13 |
+
|
14 |
+
# Virtual Environment
|
15 |
+
.venv/
|
16 |
+
|
17 |
+
# VSCode
|
18 |
+
.vscode/
|
19 |
+
*.code-workspace
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: News Time Series Anomaly Detection
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.29.0
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
title: News Time Series Anomaly Detection
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.29.0
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from src.visualization import plot_time_series
|
3 |
+
|
4 |
+
PROJECT_HTML_PATH = "sections/project_description.html"
|
5 |
+
WELCOME_HTML_PATH = "sections/welcome_section.html"
|
6 |
+
DEMO_HTML_PATH = "sections/demo_section.html"
|
7 |
+
TRY_IT_YOURSELF_HTML_PATH = "sections/try_it_yourself.html"
|
8 |
+
CSS_FILE_PATH = "sections/styles/blocks.css"
|
9 |
+
ANOMALY_METHODS = ["LSTM", "ARIMA", "IQR"]
|
10 |
+
|
11 |
+
with open(PROJECT_HTML_PATH, "r") as file:
|
12 |
+
project_description_html = file.read()
|
13 |
+
with open(WELCOME_HTML_PATH, "r") as file:
|
14 |
+
welcome_html = file.read()
|
15 |
+
with open(DEMO_HTML_PATH, "r") as file:
|
16 |
+
demo_section_html = file.read()
|
17 |
+
with open(TRY_IT_YOURSELF_HTML_PATH, "r") as file:
|
18 |
+
try_it_yourself_html = file.read()
|
19 |
+
|
20 |
+
with open(CSS_FILE_PATH, "r") as css_file:
|
21 |
+
blocks_css = css_file.read()
|
22 |
+
|
23 |
+
with gr.Blocks(css=blocks_css) as demo:
|
24 |
+
gr.HTML(project_description_html)
|
25 |
+
gr.Markdown(welcome_html)
|
26 |
+
gr.Markdown(demo_section_html)
|
27 |
+
gr.HTML(try_it_yourself_html)
|
28 |
+
|
29 |
+
file_input = gr.File(label="Upload Time Series CSV")
|
30 |
+
plot_btn = gr.Button("Plot Time Series")
|
31 |
+
plot_output = gr.Plot(label="Time Series Plot")
|
32 |
+
|
33 |
+
method_input = gr.Dropdown(choices=ANOMALY_METHODS, label="Select Anomaly Detection Method", value="LSTM")
|
34 |
+
analyze_btn = gr.Button("Detect Anomalies")
|
35 |
+
anomaly_output = gr.Plot(label="Anomaly Detection Results")
|
36 |
+
|
37 |
+
plot_btn.click(
|
38 |
+
fn=plot_time_series,
|
39 |
+
inputs=[file_input],
|
40 |
+
outputs=[plot_output]
|
41 |
+
)
|
42 |
+
|
43 |
+
# analyze_btn.click(
|
44 |
+
# fn=detect_anomalies,
|
45 |
+
# inputs=[file_input, method_input],
|
46 |
+
# outputs=[anomaly_output]
|
47 |
+
# )
|
48 |
+
|
49 |
+
demo.launch(show_api=False)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio==5.29.0
|
2 |
+
plotly==6.0.1
|
sections/demo_section.html
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<section>
|
2 |
+
<h2>π What This Demo Does</h2>
|
3 |
+
<ul>
|
4 |
+
<li><strong>π Time Series Visualization</strong><br>Upload your CSV file containing dates and disease mention counts, and visualize the temporal patterns using interactive Plotly charts.</li>
|
5 |
+
<li><strong>π Anomaly Detection</strong><br>Choose from multiple detection methods to identify unusual patterns in your time series:
|
6 |
+
<ul>
|
7 |
+
<li><strong>LSTM:</strong> Uses deep learning to model sequential data and detect anomalies based on deviations from predicted patterns</li>
|
8 |
+
<li><strong>ARIMA:</strong> Employs statistical methods to forecast time series and identify anomalies by comparing actual values to predictions</li>
|
9 |
+
<li><strong>IQR:</strong> Flags anomalies by identifying data points that fall outside the interquartile range</li>
|
10 |
+
</ul>
|
11 |
+
</li>
|
12 |
+
</ul>
|
13 |
+
</section>
|
sections/project_description.html
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>TrustAlert: News Anomaly Detection</title>
|
7 |
+
<style>
|
8 |
+
body {
|
9 |
+
font-family: 'Segoe UI', sans-serif;
|
10 |
+
line-height: 1.6;
|
11 |
+
margin: 0;
|
12 |
+
padding: 0;
|
13 |
+
color: #333;
|
14 |
+
}
|
15 |
+
header {
|
16 |
+
background-color: #2a4d69;
|
17 |
+
color: white !important;
|
18 |
+
padding: 20px;
|
19 |
+
text-align: center;
|
20 |
+
}
|
21 |
+
section {
|
22 |
+
padding: 20px;
|
23 |
+
margin: 20px auto;
|
24 |
+
color-scheme: light;
|
25 |
+
}
|
26 |
+
ul {
|
27 |
+
padding-left: 20px;
|
28 |
+
}
|
29 |
+
body, p, ul, li, strong, code {
|
30 |
+
color: #333;
|
31 |
+
}
|
32 |
+
</style>
|
33 |
+
</head>
|
34 |
+
<body>
|
35 |
+
<header>
|
36 |
+
<h1 style="color:white !important;">π‘οΈ TrustAlert: News Time Series Anomaly Detection</h1>
|
37 |
+
<p style="color:white !important;">Detecting anomalies in disease-related news coverage using advanced time series analysis</p>
|
38 |
+
</header>
|
39 |
+
<section>
|
40 |
+
<p>This tool analyzes temporal patterns in disease-related news coverage to identify potential outbreaks or unusual events. By detecting anomalies in the frequency of disease mentions, we can help public health officials spot emerging health concerns early.</p>
|
41 |
+
</section>
|
42 |
+
</body>
|
43 |
+
</html>
|
sections/styles/blocks.css
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
body {
|
2 |
+
font-family: 'Segoe UI', sans-serif;
|
3 |
+
line-height: 1.6;
|
4 |
+
margin: 0;
|
5 |
+
padding: 0;
|
6 |
+
color: #333;
|
7 |
+
}
|
8 |
+
|
9 |
+
h1, h2 {
|
10 |
+
font-family: 'Segoe UI', sans-serif;
|
11 |
+
color: #2a4d69;
|
12 |
+
}
|
13 |
+
|
14 |
+
h3 {
|
15 |
+
font-family: 'Segoe UI', sans-serif;
|
16 |
+
color: #4b86b4;
|
17 |
+
}
|
18 |
+
|
19 |
+
.gr-button {
|
20 |
+
background: linear-gradient(to right, #4facfe 0%, #00f2fe 100%);
|
21 |
+
font-weight: bold;
|
22 |
+
border-radius: 12px;
|
23 |
+
padding: 10px 16px;
|
24 |
+
}
|
25 |
+
|
26 |
+
.gr-button:hover {
|
27 |
+
background: #00c9fe;
|
28 |
+
}
|
29 |
+
|
30 |
+
textarea {
|
31 |
+
border-radius: 10px;
|
32 |
+
border: 1px solid #ccc;
|
33 |
+
padding: 12px;
|
34 |
+
}
|
35 |
+
|
36 |
+
.gr-box {
|
37 |
+
border-radius: 10px;
|
38 |
+
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
|
39 |
+
}
|
sections/try_it_yourself.html
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<section>
|
2 |
+
<h2>π§ͺ Try It Yourself</h2>
|
3 |
+
<ul>
|
4 |
+
<li>π Upload a CSV file with two columns: dates in the first column and disease mention counts in the second</li>
|
5 |
+
<li>π― Click "Plot Time Series" to visualize your data</li>
|
6 |
+
<li>π Select an anomaly detection method from the dropdown</li>
|
7 |
+
<li>β‘ Click "Detect Anomalies" to identify unusual patterns in your time series</li>
|
8 |
+
</ul>
|
9 |
+
<p>This tool combines time series analysis and anomaly detection to help identify potential disease outbreaks based on news coverage patterns. π‘</p>
|
10 |
+
</section>
|
sections/welcome_section.html
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<section>
|
2 |
+
<h2>Welcome! π</h2>
|
3 |
+
<p>This demo is part of the <strong>TrustAlert: Empowering Public Health with Real-Time Insights and Future Preparedness</strong> project, where we detect unusual patterns in disease-related news coverage that might indicate potential outbreaks or emerging health concerns.</p>
|
4 |
+
<p><strong>AI for early health alerts</strong>, powered by time series analysis and anomaly detection.</p>
|
5 |
+
</section>
|
src/visualization.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
|
4 |
+
|
5 |
+
def plot_time_series(file):
|
6 |
+
"""
|
7 |
+
Plots a time series graph from a CSV file.
|
8 |
+
|
9 |
+
This function reads the CSV file and generates a line plot
|
10 |
+
showing the disease mentions over time.
|
11 |
+
|
12 |
+
"""
|
13 |
+
df = pd.read_csv(file.name)
|
14 |
+
fig = px.line(
|
15 |
+
df,
|
16 |
+
x=df.columns[0],
|
17 |
+
y=df.columns[1],
|
18 |
+
title='Disease Mentions Over Time'
|
19 |
+
)
|
20 |
+
return fig
|