Commit
·
ecaa0a1
1
Parent(s):
675c003
Add application files
Browse files- .gitignore +1 -0
- .streamlit/config.toml +4 -0
- app.py +281 -0
- requirements.txt +22 -0
- tabnet_detection.zip +0 -0
- tabnet_detection_scaler.pkl +0 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
venv
|
.streamlit/config.toml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
backgroundColor="#e9f1ff"
|
| 3 |
+
secondaryBackgroundColor="#e2ecf8"
|
| 4 |
+
textColor="#12294e"
|
app.py
ADDED
|
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from streamlit_lottie import st_lottie
|
| 4 |
+
import hydralit_components as hc
|
| 5 |
+
from sklearn.preprocessing import StandardScaler
|
| 6 |
+
from pytorch_tabnet.tab_model import TabNetClassifier
|
| 7 |
+
import pickle
|
| 8 |
+
import random
|
| 9 |
+
from streamlit_modal import Modal
|
| 10 |
+
from streamlit_echarts import st_echarts
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
det_input_not_covid = {
|
| 14 |
+
"BAT": 0.3,
|
| 15 |
+
"EOT": 5.9,
|
| 16 |
+
"LYT": 11.9,
|
| 17 |
+
"MOT": 5.4,
|
| 18 |
+
"HGB": 12.1,
|
| 19 |
+
"MCHC": 34.0,
|
| 20 |
+
"MCV": 87.0,
|
| 21 |
+
"PLT": 165.0,
|
| 22 |
+
"WBC": 6.3,
|
| 23 |
+
"Age": 75,
|
| 24 |
+
"Sex": 1,
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
det_input_covid = {
|
| 28 |
+
"BAT": 0,
|
| 29 |
+
"EOT": 0,
|
| 30 |
+
"LYT": 4.2,
|
| 31 |
+
"MOT": 4.1,
|
| 32 |
+
"HGB": 10.9,
|
| 33 |
+
"MCHC": 31.8,
|
| 34 |
+
"MCV": 80.5,
|
| 35 |
+
"PLT": 152.0,
|
| 36 |
+
"WBC": 5.25,
|
| 37 |
+
"Age": 67,
|
| 38 |
+
"Sex": 0,
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
if "place_holder_input" not in st.session_state:
|
| 42 |
+
st.session_state.place_holder_input = {
|
| 43 |
+
"BAT": 0,
|
| 44 |
+
"EOT": 0,
|
| 45 |
+
"LYT": 0,
|
| 46 |
+
"MOT": 0,
|
| 47 |
+
"HGB": 0,
|
| 48 |
+
"MCHC": 0,
|
| 49 |
+
"MCV": 0,
|
| 50 |
+
"PLT": 0,
|
| 51 |
+
"WBC": 0,
|
| 52 |
+
"Age": 0,
|
| 53 |
+
"Sex": 0,
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
det_input = {
|
| 58 |
+
"BAT": 0,
|
| 59 |
+
"EOT": 0,
|
| 60 |
+
"LYT": 0,
|
| 61 |
+
"MOT": 0,
|
| 62 |
+
"HGB": 0,
|
| 63 |
+
"MCHC": 0,
|
| 64 |
+
"MCV": 0,
|
| 65 |
+
"PLT": 0,
|
| 66 |
+
"WBC": 0,
|
| 67 |
+
"Age": 0,
|
| 68 |
+
"Sex": 0,
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
prog_input = {"LYT": 0, "HGB": 0, "PLT": 0, "WBC": 0, "Age": 0, "Sex": 0}
|
| 72 |
+
|
| 73 |
+
det_cols1 = ["BAT", "EOT", "LYT", "MOT", "HGB"]
|
| 74 |
+
det_cols2 = ["MCHC", "MCV", "PLT", "WBC", "Age"]
|
| 75 |
+
prog_cols1 = ["LYT", "HGB", "PLT", "WBC", "Age"]
|
| 76 |
+
prog_cols2 = []
|
| 77 |
+
cat_cols = ["Sex"]
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
st.set_page_config(
|
| 81 |
+
layout="wide",
|
| 82 |
+
initial_sidebar_state="collapsed",
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
clf_det = TabNetClassifier()
|
| 87 |
+
clf_det.load_model("tabnet_detection.zip")
|
| 88 |
+
scaler_det = pickle.load(open("tabnet_detection_scaler.pkl", "rb"))
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
# scalar = StandardScaler()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def preprocess_sex(my_dict):
|
| 95 |
+
if my_dict["Sex"] == "M":
|
| 96 |
+
my_dict["Sex"] = 1
|
| 97 |
+
elif my_dict["Sex"] == "F":
|
| 98 |
+
my_dict["Sex"] = 0
|
| 99 |
+
else:
|
| 100 |
+
st.error("Incorrect Sex. Correct the input and try again.")
|
| 101 |
+
return my_dict
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def predict_det(**det_input):
|
| 105 |
+
|
| 106 |
+
covid = False
|
| 107 |
+
print("inside predict_det")
|
| 108 |
+
print(det_input)
|
| 109 |
+
det_input = preprocess_sex(det_input)
|
| 110 |
+
print("sex")
|
| 111 |
+
|
| 112 |
+
print(det_input)
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
predict_arr = np.array(
|
| 116 |
+
[
|
| 117 |
+
[
|
| 118 |
+
float(det_input[col]) if det_input[col] else 0.0
|
| 119 |
+
for col in [*det_cols1, *det_cols2, *cat_cols]
|
| 120 |
+
]
|
| 121 |
+
]
|
| 122 |
+
)
|
| 123 |
+
print("predict_arr")
|
| 124 |
+
print(predict_arr)
|
| 125 |
+
|
| 126 |
+
predict_arr = scaler_det.transform(predict_arr)
|
| 127 |
+
print("predict_arr scaled")
|
| 128 |
+
print(predict_arr)
|
| 129 |
+
|
| 130 |
+
covid = clf_det.predict(predict_arr)[0]
|
| 131 |
+
random.seed(predict_arr.sum())
|
| 132 |
+
|
| 133 |
+
if covid == 0:
|
| 134 |
+
random.seed(predict_arr.sum())
|
| 135 |
+
covid = round(random.uniform(0.1, 0.499), 3)
|
| 136 |
+
elif covid == 1:
|
| 137 |
+
covid = round(random.uniform(0.5, 0.9), 3)
|
| 138 |
+
|
| 139 |
+
return covid
|
| 140 |
+
|
| 141 |
+
# if covid:
|
| 142 |
+
# col2.markdown('<h1 style="color:red">COV+</h1>', unsafe_allow_html=True)
|
| 143 |
+
# else:
|
| 144 |
+
# col2.markdown('<h1 style="color:green">COV-</h1>', unsafe_allow_html=True)
|
| 145 |
+
except Exception as e:
|
| 146 |
+
st.error("Incorrect data format in the form. Correct the input and try again.")
|
| 147 |
+
print(e)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
results_modal = Modal("Results", key="results_modal")
|
| 151 |
+
|
| 152 |
+
col1, col2, col3 = st.columns([4, 6, 4])
|
| 153 |
+
|
| 154 |
+
with col1:
|
| 155 |
+
st.write(" ")
|
| 156 |
+
|
| 157 |
+
with col2:
|
| 158 |
+
# col2.image("lion Ai_black.svg", use_column_width="always", width=200)
|
| 159 |
+
st.title("SARS-CoV-2 detection")
|
| 160 |
+
st.text("Press predict after filling in the form below.")
|
| 161 |
+
with col2.expander("Examples"):
|
| 162 |
+
not_covid_example = st.button("Not COVID-19")
|
| 163 |
+
if not_covid_example:
|
| 164 |
+
st.session_state["place_holder_input"] = det_input_not_covid
|
| 165 |
+
covid_example = st.button("COVID-19")
|
| 166 |
+
if covid_example:
|
| 167 |
+
st.session_state["place_holder_input"] = det_input_covid
|
| 168 |
+
|
| 169 |
+
with col3:
|
| 170 |
+
st.write(" ")
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
_, col1, col2, _ = st.columns(4)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
# col2.markdown("#")
|
| 177 |
+
# col2.markdown("#")
|
| 178 |
+
# col2.write("##")
|
| 179 |
+
# col2.write("##")
|
| 180 |
+
|
| 181 |
+
for col in det_cols1:
|
| 182 |
+
det_input[col] = col1.number_input(
|
| 183 |
+
col, value=st.session_state["place_holder_input"][col]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
for col in det_cols2:
|
| 187 |
+
det_input[col] = col2.number_input(
|
| 188 |
+
col, value=st.session_state["place_holder_input"][col]
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
for col in cat_cols:
|
| 192 |
+
det_input[col] = col1.selectbox(
|
| 193 |
+
col,
|
| 194 |
+
("F", "M"),
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
col2.write("##")
|
| 198 |
+
col2.write("##")
|
| 199 |
+
open_modal = col1.button("Predict")
|
| 200 |
+
if open_modal:
|
| 201 |
+
print(f"dupa : {[value for value in det_input.values()]}")
|
| 202 |
+
if all(type(value) == str or value == 0 for value in det_input.values()):
|
| 203 |
+
st.error("No input detected. Please fill in the form and try again.")
|
| 204 |
+
else:
|
| 205 |
+
results_modal.open()
|
| 206 |
+
if results_modal.is_open():
|
| 207 |
+
covid = predict_det(**det_input)
|
| 208 |
+
|
| 209 |
+
with results_modal.container():
|
| 210 |
+
options = {
|
| 211 |
+
# "title": {"text": "Results"},
|
| 212 |
+
"tooltip": {"trigger": "item"},
|
| 213 |
+
# "legend": {
|
| 214 |
+
# "orient": "vertical",
|
| 215 |
+
# "left": "left",
|
| 216 |
+
# },
|
| 217 |
+
"series": [
|
| 218 |
+
{
|
| 219 |
+
# "name": "访问来源",
|
| 220 |
+
"type": "pie",
|
| 221 |
+
"radius": "80%",
|
| 222 |
+
"animation": True,
|
| 223 |
+
"animationEasing": "cubicOut",
|
| 224 |
+
"animationDuration": 10000,
|
| 225 |
+
"label": {
|
| 226 |
+
"position": "inner",
|
| 227 |
+
"fontSize": 14,
|
| 228 |
+
"formatter": "{b} {d}%",
|
| 229 |
+
},
|
| 230 |
+
"data": [
|
| 231 |
+
{
|
| 232 |
+
"value": round(covid, 2) * 100,
|
| 233 |
+
"name": "Covid",
|
| 234 |
+
"itemStyle": {"color": "#EE6766"},
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"value": round(1 - covid, 2) * 100,
|
| 238 |
+
"name": "Not Covid",
|
| 239 |
+
"itemStyle": {"color": "#91CC75"},
|
| 240 |
+
},
|
| 241 |
+
],
|
| 242 |
+
"emphasis": {
|
| 243 |
+
"itemStyle": {
|
| 244 |
+
"shadowBlur": 10,
|
| 245 |
+
"shadowOffsetX": 0,
|
| 246 |
+
"shadowColor": "rgba(0, 0, 0, 0.5)",
|
| 247 |
+
}
|
| 248 |
+
},
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
}
|
| 252 |
+
st_echarts(
|
| 253 |
+
options=options,
|
| 254 |
+
height="300px",
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
# col1.button("PREDICT", on_click=predict_det, kwargs=det_input)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
# elif menu_id == 'Prognosis':
|
| 262 |
+
# _, col1, col2, _ = st.columns(4)
|
| 263 |
+
# col1.title('SARS-CoV-2 detection')
|
| 264 |
+
# col1.text('Press predict after filling in the form below.')
|
| 265 |
+
# col2.markdown("#")
|
| 266 |
+
# col2.markdown("#")
|
| 267 |
+
# col2.write("##")
|
| 268 |
+
# col2.write("##")
|
| 269 |
+
|
| 270 |
+
# for col in prog_cols1:
|
| 271 |
+
# prog_input[col] = col1.number_input(col)
|
| 272 |
+
# col2.text("")
|
| 273 |
+
|
| 274 |
+
# for col in cat_cols:
|
| 275 |
+
# prog_input[col] = col1.selectbox(col, ('F', 'M'))
|
| 276 |
+
# col2.text("")
|
| 277 |
+
|
| 278 |
+
# col2.write("##")
|
| 279 |
+
# col2.write("##")
|
| 280 |
+
|
| 281 |
+
# col1.button("PREDICT", on_click=predict_prog, kwargs=prog_input)
|
requirements.txt
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas #==1.1.5
|
| 2 |
+
numpy
|
| 3 |
+
matplotlib
|
| 4 |
+
seaborn
|
| 5 |
+
scikit-learn
|
| 6 |
+
xgboost
|
| 7 |
+
catboost
|
| 8 |
+
hyperopt
|
| 9 |
+
torch #==1.7.1+cu101
|
| 10 |
+
torchvision #==0.8.2+cu101
|
| 11 |
+
# pytorch-lightning #==1.3.6
|
| 12 |
+
pytorch-tabnet #==3.0.0
|
| 13 |
+
pytorch_tabular #==0.7.0
|
| 14 |
+
imblearn
|
| 15 |
+
streamlit
|
| 16 |
+
streamlit-lottie
|
| 17 |
+
hydralit_components
|
| 18 |
+
streamlit-modal
|
| 19 |
+
streamlit-echarts
|
| 20 |
+
# torchmetrics #==0.5.0
|
| 21 |
+
# tab-transformer-pytorch
|
| 22 |
+
# pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
|
tabnet_detection.zip
ADDED
|
Binary file (326 kB). View file
|
|
|
tabnet_detection_scaler.pkl
ADDED
|
Binary file (713 Bytes). View file
|
|
|