File size: 36,766 Bytes
e4f1db2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
import React from 'react';
import { BookOpen, Code, Database, Brain, Stethoscope, Shield, Wrench, Users, TrendingUp, Award, Target, Crown, ExternalLink, Clock, Star, Users2, Globe, Video, FileText, Laptop } from 'lucide-react';

interface Course {
  title: string;
  platform: string;
  url: string;
  duration: string;
  level: 'Beginner' | 'Intermediate' | 'Advanced';
  rating?: number;
}

interface Book {
  title: string;
  author: string;
  url: string;
  description: string;
}

interface PhaseProps {
  phaseNumber: number;
  title: string;
  description: string;
  items: {
    title: string;
    objective: string;
    icon: React.ReactNode;
    courses: Course[];
    books?: Book[];
    topics: string[];
    practicalProjects?: string[];
    estimatedTime: string;
  }[];
  icon: React.ReactNode;
  color: string;
  isLast?: boolean;
}

const Phase: React.FC<PhaseProps> = ({ phaseNumber, title, description, items, icon, color, isLast }) => {
  return (
    <div className="relative">
      {/* Timeline line */}
      {!isLast && (
        <div className="absolute left-8 top-20 w-0.5 h-full bg-gray-300 z-0"></div>
      )}
      
      <div className="relative z-10 flex items-start mb-16">
        {/* Phase circle indicator */}
        <div className={`flex-shrink-0 w-16 h-16 rounded-full ${color} flex items-center justify-center mr-8 shadow-lg`}>
          <div className="text-white font-bold text-lg">{phaseNumber}</div>
        </div>
        
        {/* Phase content */}
        <div className="flex-grow">
          <div className="mb-6">
            <h2 className="text-2xl font-bold text-gray-900 mb-2">{title}</h2>
            <p className="text-gray-600 text-lg">{description}</p>
          </div>
          
          <div className="space-y-8">
            {items.map((item, index) => (
              <div key={index} className="bg-gradient-to-br from-white to-gray-50 rounded-xl shadow-lg p-8 border border-gray-200 hover:shadow-2xl hover:scale-[1.02] transition-all duration-300 ml-8 group">
                {/* Header with icon and title */}
                <div className="flex items-center mb-6">
                  <div className="bg-gradient-to-br from-blue-500 to-purple-600 p-3 rounded-lg mr-4 group-hover:scale-110 transition-transform duration-300">
                    {item.icon}
                  </div>
                  <div className="flex-grow">
                    <h3 className="text-xl font-bold text-gray-900 mb-1">{item.title}</h3>
                    <div className="flex items-center text-sm text-gray-500">
                      <Clock className="h-4 w-4 mr-1" />
                      <span>Estimated time: {item.estimatedTime}</span>
                    </div>
                  </div>
                </div>
                
                {/* Objective */}
                <div className="mb-6 p-4 bg-blue-50 rounded-lg border-l-4 border-blue-500">
                  <h4 className="text-sm font-semibold text-blue-900 mb-2 flex items-center">
                    <Target className="h-4 w-4 mr-2" />
                    Objective
                  </h4>
                  <p className="text-sm text-blue-800">{item.objective}</p>
                </div>
                
                {/* Courses */}
                <div className="mb-6">
                  <h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
                    <Video className="h-4 w-4 mr-2" />
                    Recommended Courses
                  </h4>
                  <div className="grid gap-3 sm:grid-cols-2">
                    {item.courses.map((course, courseIndex) => (
                      <a
                        key={courseIndex}
                        href={course.url}
                        target="_blank"
                        rel="noopener noreferrer"
                        className="block p-4 bg-white rounded-lg border border-gray-200 hover:border-blue-300 hover:shadow-md transition-all duration-200 group/course"
                      >
                        <div className="flex items-start justify-between mb-2">
                          <h5 className="font-medium text-gray-900 text-sm group-hover/course:text-blue-600 transition-colors">{course.title}</h5>
                          <ExternalLink className="h-3 w-3 text-gray-400 group-hover/course:text-blue-500 flex-shrink-0 ml-2" />
                        </div>
                        <div className="flex items-center justify-between text-xs text-gray-500">
                          <span className="bg-gray-100 px-2 py-1 rounded">{course.platform}</span>
                          <div className="flex items-center space-x-2">
                            <span className={`px-2 py-1 rounded text-xs font-medium ${
                              course.level === 'Beginner' ? 'bg-green-100 text-green-700' :
                              course.level === 'Intermediate' ? 'bg-yellow-100 text-yellow-700' :
                              'bg-red-100 text-red-700'
                            }`}>
                              {course.level}
                            </span>
                            <span>{course.duration}</span>
                            {course.rating && (
                              <div className="flex items-center">
                                <Star className="h-3 w-3 text-yellow-400 fill-current" />
                                <span className="ml-1">{course.rating}</span>
                              </div>
                            )}
                          </div>
                        </div>
                      </a>
                    ))}
                  </div>
                </div>

                {/* Books */}
                {item.books && item.books.length > 0 && (
                  <div className="mb-6">
                    <h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
                      <BookOpen className="h-4 w-4 mr-2" />
                      Essential Reading
                    </h4>
                    <div className="space-y-3">
                      {item.books.map((book, bookIndex) => (
                        <a
                          key={bookIndex}
                          href={book.url}
                          target="_blank"
                          rel="noopener noreferrer"
                          className="block p-4 bg-orange-50 rounded-lg border border-orange-200 hover:border-orange-300 hover:shadow-md transition-all duration-200 group/book"
                        >
                          <div className="flex items-start justify-between mb-2">
                            <div>
                              <h5 className="font-medium text-gray-900 text-sm group-hover/book:text-orange-600 transition-colors">{book.title}</h5>
                              <p className="text-xs text-gray-600">by {book.author}</p>
                            </div>
                            <ExternalLink className="h-3 w-3 text-gray-400 group-hover/book:text-orange-500 flex-shrink-0 ml-2" />
                          </div>
                          <p className="text-xs text-gray-600">{book.description}</p>
                        </a>
                      ))}
                    </div>
                  </div>
                )}

                {/* Practical Projects */}
                {item.practicalProjects && item.practicalProjects.length > 0 && (
                  <div className="mb-6">
                    <h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
                      <Laptop className="h-4 w-4 mr-2" />
                      Hands-on Projects
                    </h4>
                    <div className="bg-green-50 rounded-lg p-4">
                      <ul className="space-y-2">
                        {item.practicalProjects.map((project, projectIndex) => (
                          <li key={projectIndex} className="flex items-start text-sm text-green-800">
                            <div className="w-2 h-2 bg-green-500 rounded-full mt-2 mr-3 flex-shrink-0"></div>
                            {project}
                          </li>
                        ))}
                      </ul>
                    </div>
                  </div>
                )}
                
                {/* Topics */}
                <div>
                  <h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center">
                    <FileText className="h-4 w-4 mr-2" />
                    Key Topics to Master
                  </h4>
                  <div className="flex flex-wrap gap-2">
                    {item.topics.map((topic, topicIndex) => (
                      <span
                        key={topicIndex}
                        className="px-3 py-1 bg-purple-100 text-purple-700 rounded-full text-xs font-medium hover:bg-purple-200 transition-colors"
                      >
                        {topic}
                      </span>
                    ))}
                  </div>
                </div>
              </div>
            ))}
          </div>
        </div>
      </div>
    </div>
  );
};

const Roadmap: React.FC = () => {
  const phases = [
    {
      phaseNumber: 1,
      title: "Foundational Knowledge",
      description: "Build essential understanding of AI concepts and programming skills",
      icon: <BookOpen className="h-8 w-8 text-white" />,
      color: "bg-blue-500",
      items: [
        {
          title: "Introduction to AI",
          objective: "Understand the basics of AI, its history, and key concepts.",
          icon: <Brain className="h-6 w-6 text-white" />,
          estimatedTime: "4-6 weeks",
          courses: [
            {
              title: "AI For Everyone",
              platform: "Coursera",
              url: "https://www.coursera.org/learn/ai-for-everyone",
              duration: "4 weeks",
              level: "Beginner",
              rating: 4.8
            },
            {
              title: "Introduction to Artificial Intelligence",
              platform: "edX MIT",
              url: "https://www.edx.org/course/introduction-to-artificial-intelligence-ai",
              duration: "5 weeks",
              level: "Beginner",
              rating: 4.6
            },
            {
              title: "AI Fundamentals",
              platform: "IBM Cognitive Class",
              url: "https://cognitiveclass.ai/courses/artificial-intelligence-fundamentals",
              duration: "3 weeks",
              level: "Beginner"
            }
          ],
          books: [
            {
              title: "Artificial Intelligence: A Guide for Thinking Humans",
              author: "Melanie Mitchell",
              url: "https://www.amazon.com/Artificial-Intelligence-Guide-Thinking-Humans/dp/0374257833",
              description: "An accessible introduction to AI concepts without technical jargon"
            },
            {
              title: "Human Compatible: Artificial Intelligence and the Problem of Control",
              author: "Stuart Russell",
              url: "https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem/dp/0525558616",
              description: "Explores the future of AI and its implications for humanity"
            }
          ],
          topics: ["AI vs. ML vs. Deep Learning", "History of AI", "Types of AI", "AI Ethics", "Current Applications", "Future Trends"]
        },
        {
          title: "Basic Programming Skills",
          objective: "Gain proficiency in Python, the most commonly used programming language in AI.",
          icon: <Code className="h-6 w-6 text-white" />,
          estimatedTime: "8-12 weeks",
          courses: [
            {
              title: "Python for Everybody Specialization",
              platform: "Coursera",
              url: "https://www.coursera.org/specializations/python",
              duration: "8 months",
              level: "Beginner",
              rating: 4.8
            },
            {
              title: "Learn Python 3",
              platform: "Codecademy",
              url: "https://www.codecademy.com/learn/learn-python-3",
              duration: "25 hours",
              level: "Beginner",
              rating: 4.7
            },
            {
              title: "Python Programming MOOC",
              platform: "University of Helsinki",
              url: "https://programming-23.mooc.fi/",
              duration: "14 weeks",
              level: "Beginner"
            },
            {
              title: "CS50's Introduction to Programming with Python",
              platform: "Harvard edX",
              url: "https://www.edx.org/course/cs50s-introduction-to-programming-with-python",
              duration: "10 weeks",
              level: "Beginner",
              rating: 4.9
            }
          ],
          books: [
            {
              title: "Python Crash Course",
              author: "Eric Matthes",
              url: "https://www.amazon.com/Python-Crash-Course-Hands-Project-Based/dp/1593279280",
              description: "A hands-on, project-based introduction to programming"
            }
          ],
          practicalProjects: [
            "Build a simple calculator application",
            "Create a weather data scraper using APIs",
            "Develop a basic web scraper with BeautifulSoup",
            "Make a simple data visualization with matplotlib"
          ],
          topics: ["Python Syntax", "Data Structures", "Functions & Classes", "NumPy", "Pandas", "File Handling", "Error Handling", "Libraries & Modules"]
        },
        {
          title: "Data Literacy",
          objective: "Learn about data types, collection, preprocessing, and analysis.",
          icon: <Database className="h-6 w-6 text-white" />,
          estimatedTime: "6-8 weeks",
          courses: [
            {
              title: "Data Science Fundamentals",
              platform: "DataCamp",
              url: "https://www.datacamp.com/tracks/data-scientist-with-python",
              duration: "87 hours",
              level: "Beginner",
              rating: 4.6
            },
            {
              title: "Introduction to Data Science in Python",
              platform: "Coursera (University of Michigan)",
              url: "https://www.coursera.org/learn/python-data-analysis",
              duration: "4 weeks",
              level: "Intermediate",
              rating: 4.5
            },
            {
              title: "Data Analysis with Python",
              platform: "freeCodeCamp",
              url: "https://www.freecodecamp.org/learn/data-analysis-with-python/",
              duration: "300 hours",
              level: "Intermediate"
            }
          ],
          books: [
            {
              title: "Python for Data Analysis",
              author: "Wes McKinney",
              url: "https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662",
              description: "Essential guide to data manipulation and analysis with pandas"
            }
          ],
          practicalProjects: [
            "Analyze a real dataset from Kaggle",
            "Create comprehensive data visualizations",
            "Build an interactive dashboard with Streamlit",
            "Perform exploratory data analysis on healthcare data"
          ],
          topics: ["Data Types", "Data Cleaning", "Exploratory Data Analysis", "Statistical Analysis", "Matplotlib", "Seaborn", "Plotly", "Data Ethics"]
        }
      ]
    },
    {
      phaseNumber: 2,
      title: "Core AI Concepts",
      description: "Master fundamental machine learning and deep learning techniques",
      icon: <Brain className="h-8 w-8 text-white" />,
      color: "bg-purple-500",
      items: [
        {
          title: "Machine Learning Basics",
          objective: "Study the fundamentals of machine learning algorithms and techniques.",
          icon: <TrendingUp className="h-6 w-6 text-white" />,
          estimatedTime: "10-12 weeks",
          courses: [
            {
              title: "Machine Learning Course",
              platform: "Coursera (Stanford)",
              url: "https://www.coursera.org/learn/machine-learning",
              duration: "11 weeks",
              level: "Intermediate",
              rating: 4.9
            },
            {
              title: "Scikit-Learn Course",
              platform: "DataCamp",
              url: "https://www.datacamp.com/courses/supervised-learning-with-scikit-learn",
              duration: "4 hours",
              level: "Intermediate",
              rating: 4.7
            },
            {
              title: "Machine Learning A-Z",
              platform: "Udemy",
              url: "https://www.udemy.com/course/machinelearning/",
              duration: "44 hours",
              level: "Beginner",
              rating: 4.5
            },
            {
              title: "Introduction to Machine Learning",
              platform: "MIT OpenCourseWare",
              url: "https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/",
              duration: "12 weeks",
              level: "Intermediate"
            }
          ],
          books: [
            {
              title: "Hands-On Machine Learning",
              author: "Aurélien Géron",
              url: "https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646",
              description: "Practical approach to ML with Python, scikit-learn, and TensorFlow"
            },
            {
              title: "Pattern Recognition and Machine Learning",
              author: "Christopher Bishop",
              url: "https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738",
              description: "Comprehensive theoretical foundation of machine learning"
            }
          ],
          practicalProjects: [
            "Build a house price prediction model",
            "Create a customer segmentation analysis",
            "Develop a recommendation system",
            "Implement classification for medical diagnosis"
          ],
          topics: ["Supervised Learning", "Unsupervised Learning", "Regression", "Classification", "Clustering", "Model Evaluation", "Cross-Validation", "Feature Engineering"]
        },
        {
          title: "Deep Learning",
          objective: "Master neural networks and their applications in various domains.",
          icon: <Brain className="h-6 w-6 text-white" />,
          estimatedTime: "12-16 weeks",
          courses: [
            {
              title: "Deep Learning Specialization",
              platform: "Coursera (deeplearning.ai)",
              url: "https://www.coursera.org/specializations/deep-learning",
              duration: "4 months",
              level: "Intermediate",
              rating: 4.8
            },
            {
              title: "CS231n: Convolutional Neural Networks",
              platform: "Stanford Online",
              url: "http://cs231n.stanford.edu/",
              duration: "16 weeks",
              level: "Advanced"
            },
            {
              title: "Fast.ai Practical Deep Learning",
              platform: "fast.ai",
              url: "https://course.fast.ai/",
              duration: "7 weeks",
              level: "Intermediate",
              rating: 4.9
            },
            {
              title: "PyTorch for Deep Learning",
              platform: "Udacity",
              url: "https://www.udacity.com/course/deep-learning-pytorch--ud188",
              duration: "2 months",
              level: "Intermediate"
            }
          ],
          books: [
            {
              title: "Deep Learning",
              author: "Ian Goodfellow, Yoshua Bengio, Aaron Courville",
              url: "https://www.amazon.com/Deep-Learning-Ian-Goodfellow/dp/0262035618",
              description: "The definitive textbook on deep learning theory and practice"
            }
          ],
          practicalProjects: [
            "Build an image classifier for medical images",
            "Create a neural network for time series forecasting",
            "Develop a generative model for synthetic data",
            "Implement transfer learning for medical imaging"
          ],
          topics: ["Neural Networks", "CNNs", "RNNs", "LSTMs", "GANs", "Transfer Learning", "Optimization", "Regularization", "TensorFlow", "PyTorch"]
        },
        {
          title: "Natural Language Processing",
          objective: "Learn to process and analyze textual data, especially medical literature.",
          icon: <FileText className="h-6 w-6 text-white" />,
          estimatedTime: "8-10 weeks",
          courses: [
            {
              title: "Natural Language Processing Specialization",
              platform: "Coursera (deeplearning.ai)",
              url: "https://www.coursera.org/specializations/natural-language-processing",
              duration: "4 months",
              level: "Intermediate",
              rating: 4.6
            },
            {
              title: "CS224n: Natural Language Processing with Deep Learning",
              platform: "Stanford Online",
              url: "http://web.stanford.edu/class/cs224n/",
              duration: "10 weeks",
              level: "Advanced"
            },
            {
              title: "NLP with Python",
              platform: "DataCamp",
              url: "https://www.datacamp.com/tracks/natural-language-processing-in-python",
              duration: "17 hours",
              level: "Intermediate",
              rating: 4.5
            }
          ],
          books: [
            {
              title: "Natural Language Processing with Python",
              author: "Steven Bird, Ewan Klein, Edward Loper",
              url: "https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495",
              description: "Practical guide to NLP using NLTK and Python"
            }
          ],
          practicalProjects: [
            "Build a medical text classifier",
            "Create a clinical notes summarizer",
            "Develop sentiment analysis for patient feedback",
            "Implement named entity recognition for medical terms"
          ],
          topics: ["Text Preprocessing", "Tokenization", "Word Embeddings", "Transformers", "BERT", "Sentiment Analysis", "Named Entity Recognition", "Language Models"]
        }
      ]
    },
    {
      phaseNumber: 3,
      title: "AI in Healthcare",
      description: "Apply AI knowledge specifically to healthcare and medical applications",
      icon: <Stethoscope className="h-8 w-8 text-white" />,
      color: "bg-green-500",
      items: [
        {
          title: "Healthcare Data Standards",
          objective: "Master healthcare data formats and interoperability standards.",
          icon: <Database className="h-6 w-6 text-white" />,
          estimatedTime: "6-8 weeks",
          courses: [
            {
              title: "Health Informatics on FHIR",
              platform: "Coursera (UC Davis)",
              url: "https://www.coursera.org/learn/fhir",
              duration: "4 weeks",
              level: "Intermediate",
              rating: 4.5
            },
            {
              title: "Healthcare Data Models and APIs",
              platform: "edX",
              url: "https://www.edx.org/course/healthcare-data-models-and-apis",
              duration: "6 weeks",
              level: "Intermediate"
            },
            {
              title: "DICOM and Medical Imaging",
              platform: "RSNA",
              url: "https://www.rsna.org/education",
              duration: "Self-paced",
              level: "Intermediate"
            }
          ],
          books: [
            {
              title: "Healthcare Information Systems",
              author: "Marion J. Ball",
              url: "https://www.amazon.com/Healthcare-Information-Systems-Marion-Ball/dp/0387403299",
              description: "Comprehensive guide to healthcare IT systems and standards"
            }
          ],
          practicalProjects: [
            "Parse and analyze FHIR resources",
            "Build a DICOM image viewer",
            "Create an HL7 message processor",
            "Develop healthcare data pipeline"
          ],
          topics: ["HL7", "FHIR", "DICOM", "EHR Systems", "Healthcare APIs", "Data Interoperability", "Medical Coding", "Healthcare Databases"]
        },
        {
          title: "AI Applications in Medicine",
          objective: "Study and implement AI solutions for specific medical domains.",
          icon: <Stethoscope className="h-6 w-6 text-white" />,
          estimatedTime: "10-12 weeks",
          courses: [
            {
              title: "AI for Medical Diagnosis",
              platform: "Coursera (deeplearning.ai)",
              url: "https://www.coursera.org/learn/ai-for-medical-diagnosis",
              duration: "3 weeks",
              level: "Intermediate",
              rating: 4.7
            },
            {
              title: "Medical Image Analysis",
              platform: "MIT OpenCourseWare",
              url: "https://ocw.mit.edu/courses/health-sciences-and-technology/",
              duration: "12 weeks",
              level: "Advanced"
            },
            {
              title: "Clinical Data Science",
              platform: "Harvard T.H. Chan School",
              url: "https://www.hsph.harvard.edu/biostatistics/",
              duration: "8 weeks",
              level: "Advanced"
            }
          ],
          books: [
            {
              title: "Artificial Intelligence in Medicine",
              author: "Peter Lucas, Arie Hasman",
              url: "https://www.amazon.com/Artificial-Intelligence-Medicine-Peter-Lucas/dp/0444502753",
              description: "Comprehensive overview of AI applications in healthcare"
            }
          ],
          practicalProjects: [
            "Build a medical image classification system",
            "Create a clinical decision support tool",
            "Develop a drug discovery pipeline",
            "Implement predictive analytics for patient outcomes"
          ],
          topics: ["Medical Imaging AI", "Clinical Decision Support", "Genomics", "Drug Discovery", "Predictive Analytics", "Personalized Medicine", "Telemedicine", "Robotic Surgery"]
        },
        {
          title: "Healthcare AI Ethics & Regulation",
          objective: "Navigate ethical and regulatory challenges in healthcare AI.",
          icon: <Shield className="h-6 w-6 text-white" />,
          estimatedTime: "4-6 weeks",
          courses: [
            {
              title: "AI in Healthcare Ethics",
              platform: "Stanford Medicine",
              url: "https://med.stanford.edu/aiethics.html",
              duration: "4 weeks",
              level: "Intermediate"
            },
            {
              title: "FDA Regulation of AI/ML",
              platform: "FDA",
              url: "https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device",
              duration: "Self-paced",
              level: "Intermediate"
            }
          ],
          books: [
            {
              title: "The Ethical Algorithm",
              author: "Michael Kearns, Aaron Roth",
              url: "https://www.amazon.com/Ethical-Algorithm-Science-Socially-Design/dp/0190948205",
              description: "Framework for designing ethical AI systems"
            }
          ],
          practicalProjects: [
            "Conduct bias analysis in medical AI models",
            "Design privacy-preserving healthcare AI",
            "Create AI governance framework",
            "Develop explainable AI for medical decisions"
          ],
          topics: ["AI Ethics", "HIPAA Compliance", "FDA Regulations", "Bias Detection", "Explainable AI", "Privacy Protection", "Algorithmic Fairness", "Regulatory Compliance"]
        }
      ]
    },
    {
      phaseNumber: 4,
      title: "Practical Experience",
      description: "Gain hands-on experience with real-world AI projects",
      icon: <Wrench className="h-8 w-8 text-white" />,
      color: "bg-orange-500",
      items: [
        {
          title: "Healthcare AI Projects",
          objective: "Build real-world AI solutions for healthcare challenges.",
          icon: <Laptop className="h-6 w-6 text-white" />,
          estimatedTime: "12-16 weeks",
          courses: [
            {
              title: "Applied Data Science Capstone",
              platform: "Coursera (IBM)",
              url: "https://www.coursera.org/learn/applied-data-science-capstone",
              duration: "6 weeks",
              level: "Advanced",
              rating: 4.4
            },
            {
              title: "Kaggle Learn",
              platform: "Kaggle",
              url: "https://www.kaggle.com/learn",
              duration: "Self-paced",
              level: "Intermediate"
            }
          ],
          practicalProjects: [
            "Medical image analysis with CNNs",
            "Clinical trial outcome prediction",
            "Drug-drug interaction detection",
            "Electronic health record analysis",
            "Medical chatbot development"
          ],
          topics: ["Project Management", "Version Control", "Model Deployment", "Cloud Platforms", "API Development", "Database Management", "Testing", "Documentation"]
        },
        {
          title: "Professional Development",
          objective: "Build network and stay current with healthcare AI trends.",
          icon: <Users2 className="h-6 w-6 text-white" />,
          estimatedTime: "Ongoing",
          courses: [
            {
              title: "Healthcare AI Leadership",
              platform: "MIT xPRO",
              url: "https://learn-xpro.mit.edu/",
              duration: "8 weeks",
              level: "Advanced"
            }
          ],
          practicalProjects: [
            "Join AMIA and attend conferences",
            "Contribute to open-source healthcare AI projects",
            "Publish research papers",
            "Present at healthcare AI meetups"
          ],
          topics: ["Professional Networks", "Research Publications", "Conference Presentations", "Open Source Contribution", "Mentorship", "Industry Trends"]
        }
      ]
    },
    {
      phaseNumber: 5,
      title: "Advanced Topics and Specialization",
      description: "Explore cutting-edge research and develop specialized expertise",
      icon: <TrendingUp className="h-8 w-8 text-white" />,
      color: "bg-red-500",
      items: [
        {
          title: "Advanced AI Research",
          objective: "Master cutting-edge AI techniques and research methodologies.",
          icon: <Award className="h-6 w-6 text-white" />,
          estimatedTime: "16-20 weeks",
          courses: [
            {
              title: "Reinforcement Learning Specialization",
              platform: "Coursera (University of Alberta)",
              url: "https://www.coursera.org/specializations/reinforcement-learning",
              duration: "4 months",
              level: "Advanced",
              rating: 4.7
            },
            {
              title: "Explainable AI",
              platform: "MIT xPRO",
              url: "https://learn-xpro.mit.edu/artificial-intelligence",
              duration: "8 weeks",
              level: "Advanced"
            }
          ],
          topics: ["Reinforcement Learning", "GANs", "Explainable AI", "AutoML", "Federated Learning", "Graph Neural Networks", "Meta-Learning", "Research Methods"]
        },
        {
          title: "Healthcare Specialization",
          objective: "Develop deep expertise in a specific healthcare AI domain.",
          icon: <Target className="h-6 w-6 text-white" />,
          estimatedTime: "6+ months",
          courses: [
            {
              title: "Genomics Data Science",
              platform: "Coursera (Johns Hopkins)",
              url: "https://www.coursera.org/specializations/genomic-data-science",
              duration: "6 months",
              level: "Advanced",
              rating: 4.5
            }
          ],
          topics: ["Medical Imaging", "Genomics", "Clinical Decision Support", "Drug Discovery", "Precision Medicine", "Digital Therapeutics", "Wearables", "Telemedicine"]
        }
      ]
    },
    {
      phaseNumber: 6,
      title: "Implementation and Leadership",
      description: "Lead AI initiatives and drive adoption in healthcare organizations",
      icon: <Crown className="h-8 w-8 text-white" />,
      color: "bg-indigo-500",
      items: [
        {
          title: "Clinical Implementation",
          objective: "Lead successful AI integration in healthcare organizations.",
          icon: <Wrench className="h-6 w-6 text-white" />,
          estimatedTime: "6+ months",
          courses: [
            {
              title: "Healthcare Innovation and Entrepreneurship",
              platform: "Harvard Business School Online",
              url: "https://online.hbs.edu/courses/healthcare-innovation/",
              duration: "8 weeks",
              level: "Advanced"
            }
          ],
          topics: ["Change Management", "Workflow Integration", "ROI Analysis", "Quality Assurance", "Risk Management", "Stakeholder Engagement", "Pilot Studies", "Scale-up Strategies"]
        },
        {
          title: "AI Leadership & Strategy",
          objective: "Drive organizational AI strategy and policy development.",
          icon: <Crown className="h-6 w-6 text-white" />,
          estimatedTime: "Ongoing",
          courses: [
            {
              title: "AI Strategy and Leadership",
              platform: "MIT Sloan",
              url: "https://executive.mit.edu/openenrollment/program/artificial_intelligence_strategy_and_leadership/",
              duration: "3 days",
              level: "Executive"
            }
          ],
          topics: ["Strategic Planning", "Policy Development", "Team Leadership", "Budget Management", "Regulatory Navigation", "Public Speaking", "Grant Writing", "Board Presentations"]
        }
      ]
    }
  ];

  return (
    <div className="max-w-7xl mx-auto">
      <div className="text-center mb-12">
        <h1 className="text-4xl font-bold text-gray-900 mb-4">AI Learning Roadmap</h1>
        <p className="text-xl text-gray-600 max-w-3xl mx-auto">
          A comprehensive guide to mastering artificial intelligence with a focus on healthcare applications. 
          Follow this structured path from foundational concepts to advanced implementation and leadership.
        </p>
      </div>

      <div className="mb-8">
        <div className="bg-blue-50 border border-blue-200 rounded-lg p-6">
          <div className="flex items-center mb-3">
            <Target className="h-6 w-6 text-blue-600 mr-2" />
            <h3 className="text-lg font-semibold text-blue-900">Learning Journey Overview</h3>
          </div>
          <p className="text-blue-800">
            This roadmap is designed as a progressive learning journey spanning 6 phases. Each phase builds upon the previous one, 
            taking you from AI fundamentals to becoming a leader in healthcare AI implementation. Expect to spend 6-12 months on each phase, 
            depending on your background and time commitment.
          </p>
        </div>
      </div>

      <div className="relative">
        {phases.map((phase, index) => (
          <Phase key={phase.phaseNumber} {...phase} isLast={index === phases.length - 1} />
        ))}
      </div>

      <div className="mt-12 text-center">
        <div className="bg-gradient-to-r from-gray-50 to-gray-100 rounded-lg p-8">
          <Award className="h-12 w-12 text-gray-600 mx-auto mb-4" />
          <h3 className="text-2xl font-bold text-gray-900 mb-4">Ready to Begin Your Journey?</h3>
          <p className="text-gray-700 max-w-2xl mx-auto">
            Remember, this roadmap is a guide, not a rigid prescription. Adapt it to your specific interests, 
            background, and career goals. The key is consistent learning and practical application of knowledge.
          </p>
        </div>
      </div>
    </div>
  );
};

export default Roadmap;