Spaces:
Running
Running
import React from 'react'; | |
import { BookOpen, Code, Database, Brain, Stethoscope, Shield, Wrench, Users, TrendingUp, Award, Target, Crown, ExternalLink, Clock, Star, Users2, Globe, Video, FileText, Laptop } from 'lucide-react'; | |
interface Course { | |
title: string; | |
platform: string; | |
url: string; | |
duration: string; | |
level: 'Beginner' | 'Intermediate' | 'Advanced'; | |
rating?: number; | |
} | |
interface Book { | |
title: string; | |
author: string; | |
url: string; | |
description: string; | |
} | |
interface PhaseProps { | |
phaseNumber: number; | |
title: string; | |
description: string; | |
items: { | |
title: string; | |
objective: string; | |
icon: React.ReactNode; | |
courses: Course[]; | |
books?: Book[]; | |
topics: string[]; | |
practicalProjects?: string[]; | |
estimatedTime: string; | |
}[]; | |
icon: React.ReactNode; | |
color: string; | |
isLast?: boolean; | |
} | |
const Phase: React.FC<PhaseProps> = ({ phaseNumber, title, description, items, icon, color, isLast }) => { | |
return ( | |
<div className="relative"> | |
{/* Timeline line */} | |
{!isLast && ( | |
<div className="absolute left-8 top-20 w-0.5 h-full bg-gray-300 z-0"></div> | |
)} | |
<div className="relative z-10 flex items-start mb-16"> | |
{/* Phase circle indicator */} | |
<div className={`flex-shrink-0 w-16 h-16 rounded-full ${color} flex items-center justify-center mr-8 shadow-lg`}> | |
<div className="text-white font-bold text-lg">{phaseNumber}</div> | |
</div> | |
{/* Phase content */} | |
<div className="flex-grow"> | |
<div className="mb-6"> | |
<h2 className="text-2xl font-bold text-gray-900 mb-2">{title}</h2> | |
<p className="text-gray-600 text-lg">{description}</p> | |
</div> | |
<div className="space-y-8"> | |
{items.map((item, index) => ( | |
<div key={index} className="bg-gradient-to-br from-white to-gray-50 rounded-xl shadow-lg p-8 border border-gray-200 hover:shadow-2xl hover:scale-[1.02] transition-all duration-300 ml-8 group"> | |
{/* Header with icon and title */} | |
<div className="flex items-center mb-6"> | |
<div className="bg-gradient-to-br from-blue-500 to-purple-600 p-3 rounded-lg mr-4 group-hover:scale-110 transition-transform duration-300"> | |
{item.icon} | |
</div> | |
<div className="flex-grow"> | |
<h3 className="text-xl font-bold text-gray-900 mb-1">{item.title}</h3> | |
<div className="flex items-center text-sm text-gray-500"> | |
<Clock className="h-4 w-4 mr-1" /> | |
<span>Estimated time: {item.estimatedTime}</span> | |
</div> | |
</div> | |
</div> | |
{/* Objective */} | |
<div className="mb-6 p-4 bg-blue-50 rounded-lg border-l-4 border-blue-500"> | |
<h4 className="text-sm font-semibold text-blue-900 mb-2 flex items-center"> | |
<Target className="h-4 w-4 mr-2" /> | |
Objective | |
</h4> | |
<p className="text-sm text-blue-800">{item.objective}</p> | |
</div> | |
{/* Courses */} | |
<div className="mb-6"> | |
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center"> | |
<Video className="h-4 w-4 mr-2" /> | |
Recommended Courses | |
</h4> | |
<div className="grid gap-3 sm:grid-cols-2"> | |
{item.courses.map((course, courseIndex) => ( | |
<a | |
key={courseIndex} | |
href={course.url} | |
target="_blank" | |
rel="noopener noreferrer" | |
className="block p-4 bg-white rounded-lg border border-gray-200 hover:border-blue-300 hover:shadow-md transition-all duration-200 group/course" | |
> | |
<div className="flex items-start justify-between mb-2"> | |
<h5 className="font-medium text-gray-900 text-sm group-hover/course:text-blue-600 transition-colors">{course.title}</h5> | |
<ExternalLink className="h-3 w-3 text-gray-400 group-hover/course:text-blue-500 flex-shrink-0 ml-2" /> | |
</div> | |
<div className="flex items-center justify-between text-xs text-gray-500"> | |
<span className="bg-gray-100 px-2 py-1 rounded">{course.platform}</span> | |
<div className="flex items-center space-x-2"> | |
<span className={`px-2 py-1 rounded text-xs font-medium ${ | |
course.level === 'Beginner' ? 'bg-green-100 text-green-700' : | |
course.level === 'Intermediate' ? 'bg-yellow-100 text-yellow-700' : | |
'bg-red-100 text-red-700' | |
}`}> | |
{course.level} | |
</span> | |
<span>{course.duration}</span> | |
{course.rating && ( | |
<div className="flex items-center"> | |
<Star className="h-3 w-3 text-yellow-400 fill-current" /> | |
<span className="ml-1">{course.rating}</span> | |
</div> | |
)} | |
</div> | |
</div> | |
</a> | |
))} | |
</div> | |
</div> | |
{/* Books */} | |
{item.books && item.books.length > 0 && ( | |
<div className="mb-6"> | |
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center"> | |
<BookOpen className="h-4 w-4 mr-2" /> | |
Essential Reading | |
</h4> | |
<div className="space-y-3"> | |
{item.books.map((book, bookIndex) => ( | |
<a | |
key={bookIndex} | |
href={book.url} | |
target="_blank" | |
rel="noopener noreferrer" | |
className="block p-4 bg-orange-50 rounded-lg border border-orange-200 hover:border-orange-300 hover:shadow-md transition-all duration-200 group/book" | |
> | |
<div className="flex items-start justify-between mb-2"> | |
<div> | |
<h5 className="font-medium text-gray-900 text-sm group-hover/book:text-orange-600 transition-colors">{book.title}</h5> | |
<p className="text-xs text-gray-600">by {book.author}</p> | |
</div> | |
<ExternalLink className="h-3 w-3 text-gray-400 group-hover/book:text-orange-500 flex-shrink-0 ml-2" /> | |
</div> | |
<p className="text-xs text-gray-600">{book.description}</p> | |
</a> | |
))} | |
</div> | |
</div> | |
)} | |
{/* Practical Projects */} | |
{item.practicalProjects && item.practicalProjects.length > 0 && ( | |
<div className="mb-6"> | |
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center"> | |
<Laptop className="h-4 w-4 mr-2" /> | |
Hands-on Projects | |
</h4> | |
<div className="bg-green-50 rounded-lg p-4"> | |
<ul className="space-y-2"> | |
{item.practicalProjects.map((project, projectIndex) => ( | |
<li key={projectIndex} className="flex items-start text-sm text-green-800"> | |
<div className="w-2 h-2 bg-green-500 rounded-full mt-2 mr-3 flex-shrink-0"></div> | |
{project} | |
</li> | |
))} | |
</ul> | |
</div> | |
</div> | |
)} | |
{/* Topics */} | |
<div> | |
<h4 className="text-sm font-semibold text-gray-700 mb-3 flex items-center"> | |
<FileText className="h-4 w-4 mr-2" /> | |
Key Topics to Master | |
</h4> | |
<div className="flex flex-wrap gap-2"> | |
{item.topics.map((topic, topicIndex) => ( | |
<span | |
key={topicIndex} | |
className="px-3 py-1 bg-purple-100 text-purple-700 rounded-full text-xs font-medium hover:bg-purple-200 transition-colors" | |
> | |
{topic} | |
</span> | |
))} | |
</div> | |
</div> | |
</div> | |
))} | |
</div> | |
</div> | |
</div> | |
</div> | |
); | |
}; | |
const Roadmap: React.FC = () => { | |
const phases = [ | |
{ | |
phaseNumber: 1, | |
title: "Foundational Knowledge", | |
description: "Build essential understanding of AI concepts and programming skills", | |
icon: <BookOpen className="h-8 w-8 text-white" />, | |
color: "bg-blue-500", | |
items: [ | |
{ | |
title: "Introduction to AI", | |
objective: "Understand the basics of AI, its history, and key concepts.", | |
icon: <Brain className="h-6 w-6 text-white" />, | |
estimatedTime: "4-6 weeks", | |
courses: [ | |
{ | |
title: "AI For Everyone", | |
platform: "Coursera", | |
url: "https://www.coursera.org/learn/ai-for-everyone", | |
duration: "4 weeks", | |
level: "Beginner", | |
rating: 4.8 | |
}, | |
{ | |
title: "Introduction to Artificial Intelligence", | |
platform: "edX MIT", | |
url: "https://www.edx.org/course/introduction-to-artificial-intelligence-ai", | |
duration: "5 weeks", | |
level: "Beginner", | |
rating: 4.6 | |
}, | |
{ | |
title: "AI Fundamentals", | |
platform: "IBM Cognitive Class", | |
url: "https://cognitiveclass.ai/courses/artificial-intelligence-fundamentals", | |
duration: "3 weeks", | |
level: "Beginner" | |
} | |
], | |
books: [ | |
{ | |
title: "Artificial Intelligence: A Guide for Thinking Humans", | |
author: "Melanie Mitchell", | |
url: "https://www.amazon.com/Artificial-Intelligence-Guide-Thinking-Humans/dp/0374257833", | |
description: "An accessible introduction to AI concepts without technical jargon" | |
}, | |
{ | |
title: "Human Compatible: Artificial Intelligence and the Problem of Control", | |
author: "Stuart Russell", | |
url: "https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem/dp/0525558616", | |
description: "Explores the future of AI and its implications for humanity" | |
} | |
], | |
topics: ["AI vs. ML vs. Deep Learning", "History of AI", "Types of AI", "AI Ethics", "Current Applications", "Future Trends"] | |
}, | |
{ | |
title: "Basic Programming Skills", | |
objective: "Gain proficiency in Python, the most commonly used programming language in AI.", | |
icon: <Code className="h-6 w-6 text-white" />, | |
estimatedTime: "8-12 weeks", | |
courses: [ | |
{ | |
title: "Python for Everybody Specialization", | |
platform: "Coursera", | |
url: "https://www.coursera.org/specializations/python", | |
duration: "8 months", | |
level: "Beginner", | |
rating: 4.8 | |
}, | |
{ | |
title: "Learn Python 3", | |
platform: "Codecademy", | |
url: "https://www.codecademy.com/learn/learn-python-3", | |
duration: "25 hours", | |
level: "Beginner", | |
rating: 4.7 | |
}, | |
{ | |
title: "Python Programming MOOC", | |
platform: "University of Helsinki", | |
url: "https://programming-23.mooc.fi/", | |
duration: "14 weeks", | |
level: "Beginner" | |
}, | |
{ | |
title: "CS50's Introduction to Programming with Python", | |
platform: "Harvard edX", | |
url: "https://www.edx.org/course/cs50s-introduction-to-programming-with-python", | |
duration: "10 weeks", | |
level: "Beginner", | |
rating: 4.9 | |
} | |
], | |
books: [ | |
{ | |
title: "Python Crash Course", | |
author: "Eric Matthes", | |
url: "https://www.amazon.com/Python-Crash-Course-Hands-Project-Based/dp/1593279280", | |
description: "A hands-on, project-based introduction to programming" | |
} | |
], | |
practicalProjects: [ | |
"Build a simple calculator application", | |
"Create a weather data scraper using APIs", | |
"Develop a basic web scraper with BeautifulSoup", | |
"Make a simple data visualization with matplotlib" | |
], | |
topics: ["Python Syntax", "Data Structures", "Functions & Classes", "NumPy", "Pandas", "File Handling", "Error Handling", "Libraries & Modules"] | |
}, | |
{ | |
title: "Data Literacy", | |
objective: "Learn about data types, collection, preprocessing, and analysis.", | |
icon: <Database className="h-6 w-6 text-white" />, | |
estimatedTime: "6-8 weeks", | |
courses: [ | |
{ | |
title: "Data Science Fundamentals", | |
platform: "DataCamp", | |
url: "https://www.datacamp.com/tracks/data-scientist-with-python", | |
duration: "87 hours", | |
level: "Beginner", | |
rating: 4.6 | |
}, | |
{ | |
title: "Introduction to Data Science in Python", | |
platform: "Coursera (University of Michigan)", | |
url: "https://www.coursera.org/learn/python-data-analysis", | |
duration: "4 weeks", | |
level: "Intermediate", | |
rating: 4.5 | |
}, | |
{ | |
title: "Data Analysis with Python", | |
platform: "freeCodeCamp", | |
url: "https://www.freecodecamp.org/learn/data-analysis-with-python/", | |
duration: "300 hours", | |
level: "Intermediate" | |
} | |
], | |
books: [ | |
{ | |
title: "Python for Data Analysis", | |
author: "Wes McKinney", | |
url: "https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1491957662", | |
description: "Essential guide to data manipulation and analysis with pandas" | |
} | |
], | |
practicalProjects: [ | |
"Analyze a real dataset from Kaggle", | |
"Create comprehensive data visualizations", | |
"Build an interactive dashboard with Streamlit", | |
"Perform exploratory data analysis on healthcare data" | |
], | |
topics: ["Data Types", "Data Cleaning", "Exploratory Data Analysis", "Statistical Analysis", "Matplotlib", "Seaborn", "Plotly", "Data Ethics"] | |
} | |
] | |
}, | |
{ | |
phaseNumber: 2, | |
title: "Core AI Concepts", | |
description: "Master fundamental machine learning and deep learning techniques", | |
icon: <Brain className="h-8 w-8 text-white" />, | |
color: "bg-purple-500", | |
items: [ | |
{ | |
title: "Machine Learning Basics", | |
objective: "Study the fundamentals of machine learning algorithms and techniques.", | |
icon: <TrendingUp className="h-6 w-6 text-white" />, | |
estimatedTime: "10-12 weeks", | |
courses: [ | |
{ | |
title: "Machine Learning Course", | |
platform: "Coursera (Stanford)", | |
url: "https://www.coursera.org/learn/machine-learning", | |
duration: "11 weeks", | |
level: "Intermediate", | |
rating: 4.9 | |
}, | |
{ | |
title: "Scikit-Learn Course", | |
platform: "DataCamp", | |
url: "https://www.datacamp.com/courses/supervised-learning-with-scikit-learn", | |
duration: "4 hours", | |
level: "Intermediate", | |
rating: 4.7 | |
}, | |
{ | |
title: "Machine Learning A-Z", | |
platform: "Udemy", | |
url: "https://www.udemy.com/course/machinelearning/", | |
duration: "44 hours", | |
level: "Beginner", | |
rating: 4.5 | |
}, | |
{ | |
title: "Introduction to Machine Learning", | |
platform: "MIT OpenCourseWare", | |
url: "https://ocw.mit.edu/courses/6-0002-introduction-to-computational-thinking-and-data-science-fall-2016/", | |
duration: "12 weeks", | |
level: "Intermediate" | |
} | |
], | |
books: [ | |
{ | |
title: "Hands-On Machine Learning", | |
author: "Aurélien Géron", | |
url: "https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646", | |
description: "Practical approach to ML with Python, scikit-learn, and TensorFlow" | |
}, | |
{ | |
title: "Pattern Recognition and Machine Learning", | |
author: "Christopher Bishop", | |
url: "https://www.amazon.com/Pattern-Recognition-Learning-Information-Statistics/dp/0387310738", | |
description: "Comprehensive theoretical foundation of machine learning" | |
} | |
], | |
practicalProjects: [ | |
"Build a house price prediction model", | |
"Create a customer segmentation analysis", | |
"Develop a recommendation system", | |
"Implement classification for medical diagnosis" | |
], | |
topics: ["Supervised Learning", "Unsupervised Learning", "Regression", "Classification", "Clustering", "Model Evaluation", "Cross-Validation", "Feature Engineering"] | |
}, | |
{ | |
title: "Deep Learning", | |
objective: "Master neural networks and their applications in various domains.", | |
icon: <Brain className="h-6 w-6 text-white" />, | |
estimatedTime: "12-16 weeks", | |
courses: [ | |
{ | |
title: "Deep Learning Specialization", | |
platform: "Coursera (deeplearning.ai)", | |
url: "https://www.coursera.org/specializations/deep-learning", | |
duration: "4 months", | |
level: "Intermediate", | |
rating: 4.8 | |
}, | |
{ | |
title: "CS231n: Convolutional Neural Networks", | |
platform: "Stanford Online", | |
url: "http://cs231n.stanford.edu/", | |
duration: "16 weeks", | |
level: "Advanced" | |
}, | |
{ | |
title: "Fast.ai Practical Deep Learning", | |
platform: "fast.ai", | |
url: "https://course.fast.ai/", | |
duration: "7 weeks", | |
level: "Intermediate", | |
rating: 4.9 | |
}, | |
{ | |
title: "PyTorch for Deep Learning", | |
platform: "Udacity", | |
url: "https://www.udacity.com/course/deep-learning-pytorch--ud188", | |
duration: "2 months", | |
level: "Intermediate" | |
} | |
], | |
books: [ | |
{ | |
title: "Deep Learning", | |
author: "Ian Goodfellow, Yoshua Bengio, Aaron Courville", | |
url: "https://www.amazon.com/Deep-Learning-Ian-Goodfellow/dp/0262035618", | |
description: "The definitive textbook on deep learning theory and practice" | |
} | |
], | |
practicalProjects: [ | |
"Build an image classifier for medical images", | |
"Create a neural network for time series forecasting", | |
"Develop a generative model for synthetic data", | |
"Implement transfer learning for medical imaging" | |
], | |
topics: ["Neural Networks", "CNNs", "RNNs", "LSTMs", "GANs", "Transfer Learning", "Optimization", "Regularization", "TensorFlow", "PyTorch"] | |
}, | |
{ | |
title: "Natural Language Processing", | |
objective: "Learn to process and analyze textual data, especially medical literature.", | |
icon: <FileText className="h-6 w-6 text-white" />, | |
estimatedTime: "8-10 weeks", | |
courses: [ | |
{ | |
title: "Natural Language Processing Specialization", | |
platform: "Coursera (deeplearning.ai)", | |
url: "https://www.coursera.org/specializations/natural-language-processing", | |
duration: "4 months", | |
level: "Intermediate", | |
rating: 4.6 | |
}, | |
{ | |
title: "CS224n: Natural Language Processing with Deep Learning", | |
platform: "Stanford Online", | |
url: "http://web.stanford.edu/class/cs224n/", | |
duration: "10 weeks", | |
level: "Advanced" | |
}, | |
{ | |
title: "NLP with Python", | |
platform: "DataCamp", | |
url: "https://www.datacamp.com/tracks/natural-language-processing-in-python", | |
duration: "17 hours", | |
level: "Intermediate", | |
rating: 4.5 | |
} | |
], | |
books: [ | |
{ | |
title: "Natural Language Processing with Python", | |
author: "Steven Bird, Ewan Klein, Edward Loper", | |
url: "https://www.amazon.com/Natural-Language-Processing-Python-Analyzing/dp/0596516495", | |
description: "Practical guide to NLP using NLTK and Python" | |
} | |
], | |
practicalProjects: [ | |
"Build a medical text classifier", | |
"Create a clinical notes summarizer", | |
"Develop sentiment analysis for patient feedback", | |
"Implement named entity recognition for medical terms" | |
], | |
topics: ["Text Preprocessing", "Tokenization", "Word Embeddings", "Transformers", "BERT", "Sentiment Analysis", "Named Entity Recognition", "Language Models"] | |
} | |
] | |
}, | |
{ | |
phaseNumber: 3, | |
title: "AI in Healthcare", | |
description: "Apply AI knowledge specifically to healthcare and medical applications", | |
icon: <Stethoscope className="h-8 w-8 text-white" />, | |
color: "bg-green-500", | |
items: [ | |
{ | |
title: "Healthcare Data Standards", | |
objective: "Master healthcare data formats and interoperability standards.", | |
icon: <Database className="h-6 w-6 text-white" />, | |
estimatedTime: "6-8 weeks", | |
courses: [ | |
{ | |
title: "Health Informatics on FHIR", | |
platform: "Coursera (UC Davis)", | |
url: "https://www.coursera.org/learn/fhir", | |
duration: "4 weeks", | |
level: "Intermediate", | |
rating: 4.5 | |
}, | |
{ | |
title: "Healthcare Data Models and APIs", | |
platform: "edX", | |
url: "https://www.edx.org/course/healthcare-data-models-and-apis", | |
duration: "6 weeks", | |
level: "Intermediate" | |
}, | |
{ | |
title: "DICOM and Medical Imaging", | |
platform: "RSNA", | |
url: "https://www.rsna.org/education", | |
duration: "Self-paced", | |
level: "Intermediate" | |
} | |
], | |
books: [ | |
{ | |
title: "Healthcare Information Systems", | |
author: "Marion J. Ball", | |
url: "https://www.amazon.com/Healthcare-Information-Systems-Marion-Ball/dp/0387403299", | |
description: "Comprehensive guide to healthcare IT systems and standards" | |
} | |
], | |
practicalProjects: [ | |
"Parse and analyze FHIR resources", | |
"Build a DICOM image viewer", | |
"Create an HL7 message processor", | |
"Develop healthcare data pipeline" | |
], | |
topics: ["HL7", "FHIR", "DICOM", "EHR Systems", "Healthcare APIs", "Data Interoperability", "Medical Coding", "Healthcare Databases"] | |
}, | |
{ | |
title: "AI Applications in Medicine", | |
objective: "Study and implement AI solutions for specific medical domains.", | |
icon: <Stethoscope className="h-6 w-6 text-white" />, | |
estimatedTime: "10-12 weeks", | |
courses: [ | |
{ | |
title: "AI for Medical Diagnosis", | |
platform: "Coursera (deeplearning.ai)", | |
url: "https://www.coursera.org/learn/ai-for-medical-diagnosis", | |
duration: "3 weeks", | |
level: "Intermediate", | |
rating: 4.7 | |
}, | |
{ | |
title: "Medical Image Analysis", | |
platform: "MIT OpenCourseWare", | |
url: "https://ocw.mit.edu/courses/health-sciences-and-technology/", | |
duration: "12 weeks", | |
level: "Advanced" | |
}, | |
{ | |
title: "Clinical Data Science", | |
platform: "Harvard T.H. Chan School", | |
url: "https://www.hsph.harvard.edu/biostatistics/", | |
duration: "8 weeks", | |
level: "Advanced" | |
} | |
], | |
books: [ | |
{ | |
title: "Artificial Intelligence in Medicine", | |
author: "Peter Lucas, Arie Hasman", | |
url: "https://www.amazon.com/Artificial-Intelligence-Medicine-Peter-Lucas/dp/0444502753", | |
description: "Comprehensive overview of AI applications in healthcare" | |
} | |
], | |
practicalProjects: [ | |
"Build a medical image classification system", | |
"Create a clinical decision support tool", | |
"Develop a drug discovery pipeline", | |
"Implement predictive analytics for patient outcomes" | |
], | |
topics: ["Medical Imaging AI", "Clinical Decision Support", "Genomics", "Drug Discovery", "Predictive Analytics", "Personalized Medicine", "Telemedicine", "Robotic Surgery"] | |
}, | |
{ | |
title: "Healthcare AI Ethics & Regulation", | |
objective: "Navigate ethical and regulatory challenges in healthcare AI.", | |
icon: <Shield className="h-6 w-6 text-white" />, | |
estimatedTime: "4-6 weeks", | |
courses: [ | |
{ | |
title: "AI in Healthcare Ethics", | |
platform: "Stanford Medicine", | |
url: "https://med.stanford.edu/aiethics.html", | |
duration: "4 weeks", | |
level: "Intermediate" | |
}, | |
{ | |
title: "FDA Regulation of AI/ML", | |
platform: "FDA", | |
url: "https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device", | |
duration: "Self-paced", | |
level: "Intermediate" | |
} | |
], | |
books: [ | |
{ | |
title: "The Ethical Algorithm", | |
author: "Michael Kearns, Aaron Roth", | |
url: "https://www.amazon.com/Ethical-Algorithm-Science-Socially-Design/dp/0190948205", | |
description: "Framework for designing ethical AI systems" | |
} | |
], | |
practicalProjects: [ | |
"Conduct bias analysis in medical AI models", | |
"Design privacy-preserving healthcare AI", | |
"Create AI governance framework", | |
"Develop explainable AI for medical decisions" | |
], | |
topics: ["AI Ethics", "HIPAA Compliance", "FDA Regulations", "Bias Detection", "Explainable AI", "Privacy Protection", "Algorithmic Fairness", "Regulatory Compliance"] | |
} | |
] | |
}, | |
{ | |
phaseNumber: 4, | |
title: "Practical Experience", | |
description: "Gain hands-on experience with real-world AI projects", | |
icon: <Wrench className="h-8 w-8 text-white" />, | |
color: "bg-orange-500", | |
items: [ | |
{ | |
title: "Healthcare AI Projects", | |
objective: "Build real-world AI solutions for healthcare challenges.", | |
icon: <Laptop className="h-6 w-6 text-white" />, | |
estimatedTime: "12-16 weeks", | |
courses: [ | |
{ | |
title: "Applied Data Science Capstone", | |
platform: "Coursera (IBM)", | |
url: "https://www.coursera.org/learn/applied-data-science-capstone", | |
duration: "6 weeks", | |
level: "Advanced", | |
rating: 4.4 | |
}, | |
{ | |
title: "Kaggle Learn", | |
platform: "Kaggle", | |
url: "https://www.kaggle.com/learn", | |
duration: "Self-paced", | |
level: "Intermediate" | |
} | |
], | |
practicalProjects: [ | |
"Medical image analysis with CNNs", | |
"Clinical trial outcome prediction", | |
"Drug-drug interaction detection", | |
"Electronic health record analysis", | |
"Medical chatbot development" | |
], | |
topics: ["Project Management", "Version Control", "Model Deployment", "Cloud Platforms", "API Development", "Database Management", "Testing", "Documentation"] | |
}, | |
{ | |
title: "Professional Development", | |
objective: "Build network and stay current with healthcare AI trends.", | |
icon: <Users2 className="h-6 w-6 text-white" />, | |
estimatedTime: "Ongoing", | |
courses: [ | |
{ | |
title: "Healthcare AI Leadership", | |
platform: "MIT xPRO", | |
url: "https://learn-xpro.mit.edu/", | |
duration: "8 weeks", | |
level: "Advanced" | |
} | |
], | |
practicalProjects: [ | |
"Join AMIA and attend conferences", | |
"Contribute to open-source healthcare AI projects", | |
"Publish research papers", | |
"Present at healthcare AI meetups" | |
], | |
topics: ["Professional Networks", "Research Publications", "Conference Presentations", "Open Source Contribution", "Mentorship", "Industry Trends"] | |
} | |
] | |
}, | |
{ | |
phaseNumber: 5, | |
title: "Advanced Topics and Specialization", | |
description: "Explore cutting-edge research and develop specialized expertise", | |
icon: <TrendingUp className="h-8 w-8 text-white" />, | |
color: "bg-red-500", | |
items: [ | |
{ | |
title: "Advanced AI Research", | |
objective: "Master cutting-edge AI techniques and research methodologies.", | |
icon: <Award className="h-6 w-6 text-white" />, | |
estimatedTime: "16-20 weeks", | |
courses: [ | |
{ | |
title: "Reinforcement Learning Specialization", | |
platform: "Coursera (University of Alberta)", | |
url: "https://www.coursera.org/specializations/reinforcement-learning", | |
duration: "4 months", | |
level: "Advanced", | |
rating: 4.7 | |
}, | |
{ | |
title: "Explainable AI", | |
platform: "MIT xPRO", | |
url: "https://learn-xpro.mit.edu/artificial-intelligence", | |
duration: "8 weeks", | |
level: "Advanced" | |
} | |
], | |
topics: ["Reinforcement Learning", "GANs", "Explainable AI", "AutoML", "Federated Learning", "Graph Neural Networks", "Meta-Learning", "Research Methods"] | |
}, | |
{ | |
title: "Healthcare Specialization", | |
objective: "Develop deep expertise in a specific healthcare AI domain.", | |
icon: <Target className="h-6 w-6 text-white" />, | |
estimatedTime: "6+ months", | |
courses: [ | |
{ | |
title: "Genomics Data Science", | |
platform: "Coursera (Johns Hopkins)", | |
url: "https://www.coursera.org/specializations/genomic-data-science", | |
duration: "6 months", | |
level: "Advanced", | |
rating: 4.5 | |
} | |
], | |
topics: ["Medical Imaging", "Genomics", "Clinical Decision Support", "Drug Discovery", "Precision Medicine", "Digital Therapeutics", "Wearables", "Telemedicine"] | |
} | |
] | |
}, | |
{ | |
phaseNumber: 6, | |
title: "Implementation and Leadership", | |
description: "Lead AI initiatives and drive adoption in healthcare organizations", | |
icon: <Crown className="h-8 w-8 text-white" />, | |
color: "bg-indigo-500", | |
items: [ | |
{ | |
title: "Clinical Implementation", | |
objective: "Lead successful AI integration in healthcare organizations.", | |
icon: <Wrench className="h-6 w-6 text-white" />, | |
estimatedTime: "6+ months", | |
courses: [ | |
{ | |
title: "Healthcare Innovation and Entrepreneurship", | |
platform: "Harvard Business School Online", | |
url: "https://online.hbs.edu/courses/healthcare-innovation/", | |
duration: "8 weeks", | |
level: "Advanced" | |
} | |
], | |
topics: ["Change Management", "Workflow Integration", "ROI Analysis", "Quality Assurance", "Risk Management", "Stakeholder Engagement", "Pilot Studies", "Scale-up Strategies"] | |
}, | |
{ | |
title: "AI Leadership & Strategy", | |
objective: "Drive organizational AI strategy and policy development.", | |
icon: <Crown className="h-6 w-6 text-white" />, | |
estimatedTime: "Ongoing", | |
courses: [ | |
{ | |
title: "AI Strategy and Leadership", | |
platform: "MIT Sloan", | |
url: "https://executive.mit.edu/openenrollment/program/artificial_intelligence_strategy_and_leadership/", | |
duration: "3 days", | |
level: "Executive" | |
} | |
], | |
topics: ["Strategic Planning", "Policy Development", "Team Leadership", "Budget Management", "Regulatory Navigation", "Public Speaking", "Grant Writing", "Board Presentations"] | |
} | |
] | |
} | |
]; | |
return ( | |
<div className="max-w-7xl mx-auto"> | |
<div className="text-center mb-12"> | |
<h1 className="text-4xl font-bold text-gray-900 mb-4">AI Learning Roadmap</h1> | |
<p className="text-xl text-gray-600 max-w-3xl mx-auto"> | |
A comprehensive guide to mastering artificial intelligence with a focus on healthcare applications. | |
Follow this structured path from foundational concepts to advanced implementation and leadership. | |
</p> | |
</div> | |
<div className="mb-8"> | |
<div className="bg-blue-50 border border-blue-200 rounded-lg p-6"> | |
<div className="flex items-center mb-3"> | |
<Target className="h-6 w-6 text-blue-600 mr-2" /> | |
<h3 className="text-lg font-semibold text-blue-900">Learning Journey Overview</h3> | |
</div> | |
<p className="text-blue-800"> | |
This roadmap is designed as a progressive learning journey spanning 6 phases. Each phase builds upon the previous one, | |
taking you from AI fundamentals to becoming a leader in healthcare AI implementation. Expect to spend 6-12 months on each phase, | |
depending on your background and time commitment. | |
</p> | |
</div> | |
</div> | |
<div className="relative"> | |
{phases.map((phase, index) => ( | |
<Phase key={phase.phaseNumber} {...phase} isLast={index === phases.length - 1} /> | |
))} | |
</div> | |
<div className="mt-12 text-center"> | |
<div className="bg-gradient-to-r from-gray-50 to-gray-100 rounded-lg p-8"> | |
<Award className="h-12 w-12 text-gray-600 mx-auto mb-4" /> | |
<h3 className="text-2xl font-bold text-gray-900 mb-4">Ready to Begin Your Journey?</h3> | |
<p className="text-gray-700 max-w-2xl mx-auto"> | |
Remember, this roadmap is a guide, not a rigid prescription. Adapt it to your specific interests, | |
background, and career goals. The key is consistent learning and practical application of knowledge. | |
</p> | |
</div> | |
</div> | |
</div> | |
); | |
}; | |
export default Roadmap; |