Spaces:
Running
Running
Commit
·
7bbab39
1
Parent(s):
b4331db
add blacklists and change name
Browse files- README.md +2 -2
- backend/routes/search.js +48 -6
- data/algorithms.json +394 -45
- data/timeline-cache.json +118 -129
- frontend/index.html +13 -10
- frontend/src/components/Navbar.tsx +1 -1
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🔬
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
@@ -7,7 +7,7 @@ sdk: docker
|
|
7 |
app_port: 3001
|
8 |
---
|
9 |
|
10 |
-
#
|
11 |
|
12 |
A web application that helps users explore AI algorithms used in medical research papers from PubMed.
|
13 |
|
|
|
1 |
---
|
2 |
+
title: Medical AI Wiki
|
3 |
emoji: 🔬
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
|
|
7 |
app_port: 3001
|
8 |
---
|
9 |
|
10 |
+
# Medical AI Wiki
|
11 |
|
12 |
A web application that helps users explore AI algorithms used in medical research papers from PubMed.
|
13 |
|
backend/routes/search.js
CHANGED
@@ -50,27 +50,47 @@ async function searchAlgorithmUsage(problem, algorithmKey, algorithmData) {
|
|
50 |
`("${problem}" AND "${synonym}")`
|
51 |
).join(' OR ');
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
// Add filters to exclude review papers, meta-analyses, and systematic reviews
|
54 |
-
const filteredQuery = `(${synonymQueries}) NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
55 |
|
56 |
const searchUrl = `${PUBMED_BASE_URL}/esearch.fcgi?db=pubmed&term=${encodeURIComponent(filteredQuery)}&retmode=json`;
|
57 |
|
58 |
-
// Debug logging for CNN specifically
|
59 |
if (algorithmKey === 'cnn') {
|
60 |
console.log(`CNN Search for "${problem}":`);
|
61 |
console.log(`Query: ${filteredQuery}`);
|
62 |
console.log(`URL: ${searchUrl}`);
|
63 |
}
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
const response = await axios.get(searchUrl);
|
66 |
const count = parseInt(response.data.esearchresult.count) || 0;
|
67 |
|
68 |
-
// Debug logging for CNN results
|
69 |
if (algorithmKey === 'cnn') {
|
70 |
console.log(`CNN Results: ${count} papers found`);
|
71 |
console.log(`Sample IDs:`, response.data.esearchresult.idlist?.slice(0, 3));
|
72 |
}
|
73 |
|
|
|
|
|
|
|
|
|
|
|
74 |
return {
|
75 |
algorithm: algorithmKey,
|
76 |
name: algorithmData.name,
|
@@ -136,8 +156,15 @@ async function fetchAlgorithmCount(key, algo) {
|
|
136 |
|
137 |
const generalQuery = algo.synonyms.map(s => `"${s}"`).join(' OR ');
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
// Add filters to exclude review papers, meta-analyses, and systematic reviews
|
140 |
-
const filteredQuery = `(${generalQuery}) NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
141 |
|
142 |
try {
|
143 |
const searchUrl = `${PUBMED_BASE_URL}/esearch.fcgi?db=pubmed&term=${encodeURIComponent(filteredQuery)}&retmode=json`;
|
@@ -203,8 +230,15 @@ router.get('/pubmed-link', (req, res) => {
|
|
203 |
`("${problem}" AND "${synonym}")`
|
204 |
).join(' OR ');
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
// Add filters to exclude review papers for PubMed links too
|
207 |
-
const filteredQuery = `(${synonymQueries}) NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
208 |
|
209 |
const pubmedUrl = `https://pubmed.ncbi.nlm.nih.gov/?term=${encodeURIComponent(filteredQuery)}`;
|
210 |
|
@@ -229,7 +263,15 @@ async function fetchAlgorithmCountByYear(key, algo, year, diskCache, retryCount
|
|
229 |
|
230 |
const generalQuery = algo.synonyms.map(s => `"${s}"`).join(' OR ');
|
231 |
const yearFilter = `"${year}"[Date - Publication]`;
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
try {
|
235 |
const searchUrl = `${PUBMED_BASE_URL}/esearch.fcgi?db=pubmed&term=${encodeURIComponent(filteredQuery)}&retmode=json`;
|
|
|
50 |
`("${problem}" AND "${synonym}")`
|
51 |
).join(' OR ');
|
52 |
|
53 |
+
// Build blacklist exclusions if they exist
|
54 |
+
let blacklistExclusions = '';
|
55 |
+
if (algorithmData.blacklist && algorithmData.blacklist.length > 0) {
|
56 |
+
const blacklistTerms = algorithmData.blacklist.map(term => `NOT "${term}"`).join(' ');
|
57 |
+
blacklistExclusions = ` ${blacklistTerms}`;
|
58 |
+
}
|
59 |
+
|
60 |
// Add filters to exclude review papers, meta-analyses, and systematic reviews
|
61 |
+
const filteredQuery = `(${synonymQueries})${blacklistExclusions} NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
62 |
|
63 |
const searchUrl = `${PUBMED_BASE_URL}/esearch.fcgi?db=pubmed&term=${encodeURIComponent(filteredQuery)}&retmode=json`;
|
64 |
|
65 |
+
// Debug logging for CNN and GAN specifically
|
66 |
if (algorithmKey === 'cnn') {
|
67 |
console.log(`CNN Search for "${problem}":`);
|
68 |
console.log(`Query: ${filteredQuery}`);
|
69 |
console.log(`URL: ${searchUrl}`);
|
70 |
}
|
71 |
|
72 |
+
if (algorithmKey === 'gan') {
|
73 |
+
console.log(`GAN Search for "${problem}":`);
|
74 |
+
console.log(`Synonym queries: ${synonymQueries}`);
|
75 |
+
console.log(`Blacklist exclusions: ${blacklistExclusions}`);
|
76 |
+
console.log(`Final query: ${filteredQuery}`);
|
77 |
+
console.log(`URL: ${searchUrl}`);
|
78 |
+
}
|
79 |
+
|
80 |
const response = await axios.get(searchUrl);
|
81 |
const count = parseInt(response.data.esearchresult.count) || 0;
|
82 |
|
83 |
+
// Debug logging for CNN and GAN results
|
84 |
if (algorithmKey === 'cnn') {
|
85 |
console.log(`CNN Results: ${count} papers found`);
|
86 |
console.log(`Sample IDs:`, response.data.esearchresult.idlist?.slice(0, 3));
|
87 |
}
|
88 |
|
89 |
+
if (algorithmKey === 'gan') {
|
90 |
+
console.log(`GAN Results: ${count} papers found`);
|
91 |
+
console.log(`Sample IDs:`, response.data.esearchresult.idlist?.slice(0, 3));
|
92 |
+
}
|
93 |
+
|
94 |
return {
|
95 |
algorithm: algorithmKey,
|
96 |
name: algorithmData.name,
|
|
|
156 |
|
157 |
const generalQuery = algo.synonyms.map(s => `"${s}"`).join(' OR ');
|
158 |
|
159 |
+
// Build blacklist exclusions if they exist
|
160 |
+
let blacklistExclusions = '';
|
161 |
+
if (algo.blacklist && algo.blacklist.length > 0) {
|
162 |
+
const blacklistTerms = algo.blacklist.map(term => `NOT "${term}"`).join(' ');
|
163 |
+
blacklistExclusions = ` ${blacklistTerms}`;
|
164 |
+
}
|
165 |
+
|
166 |
// Add filters to exclude review papers, meta-analyses, and systematic reviews
|
167 |
+
const filteredQuery = `(${generalQuery})${blacklistExclusions} NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
168 |
|
169 |
try {
|
170 |
const searchUrl = `${PUBMED_BASE_URL}/esearch.fcgi?db=pubmed&term=${encodeURIComponent(filteredQuery)}&retmode=json`;
|
|
|
230 |
`("${problem}" AND "${synonym}")`
|
231 |
).join(' OR ');
|
232 |
|
233 |
+
// Build blacklist exclusions if they exist
|
234 |
+
let blacklistExclusions = '';
|
235 |
+
if (algoData.blacklist && algoData.blacklist.length > 0) {
|
236 |
+
const blacklistTerms = algoData.blacklist.map(term => `NOT "${term}"`).join(' ');
|
237 |
+
blacklistExclusions = ` ${blacklistTerms}`;
|
238 |
+
}
|
239 |
+
|
240 |
// Add filters to exclude review papers for PubMed links too
|
241 |
+
const filteredQuery = `(${synonymQueries})${blacklistExclusions} NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
242 |
|
243 |
const pubmedUrl = `https://pubmed.ncbi.nlm.nih.gov/?term=${encodeURIComponent(filteredQuery)}`;
|
244 |
|
|
|
263 |
|
264 |
const generalQuery = algo.synonyms.map(s => `"${s}"`).join(' OR ');
|
265 |
const yearFilter = `"${year}"[Date - Publication]`;
|
266 |
+
|
267 |
+
// Build blacklist exclusions if they exist
|
268 |
+
let blacklistExclusions = '';
|
269 |
+
if (algo.blacklist && algo.blacklist.length > 0) {
|
270 |
+
const blacklistTerms = algo.blacklist.map(term => `NOT "${term}"`).join(' ');
|
271 |
+
blacklistExclusions = ` ${blacklistTerms}`;
|
272 |
+
}
|
273 |
+
|
274 |
+
const filteredQuery = `(${generalQuery}) AND ${yearFilter}${blacklistExclusions} NOT Review[Publication Type] NOT Meta-Analysis[Publication Type] NOT Systematic Review[Publication Type]`;
|
275 |
|
276 |
try {
|
277 |
const searchUrl = `${PUBMED_BASE_URL}/esearch.fcgi?db=pubmed&term=${encodeURIComponent(filteredQuery)}&retmode=json`;
|
data/algorithms.json
CHANGED
@@ -4,235 +4,584 @@
|
|
4 |
"name": "Support Vector Machine",
|
5 |
"category": "classical_ml",
|
6 |
"description": "A supervised learning algorithm that finds optimal hyperplanes for classification and regression tasks",
|
7 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
},
|
9 |
"decision_tree": {
|
10 |
"name": "Decision Tree",
|
11 |
-
"category": "classical_ml",
|
12 |
"description": "A tree-like model that makes decisions by splitting data based on feature values",
|
13 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
},
|
15 |
"random_forest": {
|
16 |
"name": "Random Forest",
|
17 |
"category": "classical_ml",
|
18 |
"description": "An ensemble method that combines multiple decision trees for improved accuracy",
|
19 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
},
|
21 |
"xgboost": {
|
22 |
"name": "XGBoost",
|
23 |
"category": "classical_ml",
|
24 |
"description": "Extreme Gradient Boosting - an optimized gradient boosting framework",
|
25 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
26 |
},
|
27 |
"logistic_regression": {
|
28 |
"name": "Logistic Regression",
|
29 |
"category": "classical_ml",
|
30 |
"description": "A linear model for binary and multiclass classification problems",
|
31 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
32 |
},
|
33 |
"naive_bayes": {
|
34 |
"name": "Naive Bayes",
|
35 |
"category": "classical_ml",
|
36 |
"description": "A probabilistic classifier based on Bayes' theorem with independence assumptions",
|
37 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
38 |
},
|
39 |
"knn": {
|
40 |
"name": "K-Nearest Neighbors",
|
41 |
"category": "classical_ml",
|
42 |
"description": "A non-parametric method that classifies data points based on the class of their nearest neighbors",
|
43 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
},
|
45 |
"kmeans": {
|
46 |
"name": "K-Means Clustering",
|
47 |
"category": "classical_ml",
|
48 |
"description": "An unsupervised clustering algorithm that partitions data into k clusters",
|
49 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
},
|
51 |
"gradient_boosting": {
|
52 |
"name": "Gradient Boosting",
|
53 |
"category": "classical_ml",
|
54 |
"description": "An ensemble method that builds models sequentially to correct errors of previous models",
|
55 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
},
|
57 |
"ada_boost": {
|
58 |
"name": "AdaBoost",
|
59 |
"category": "classical_ml",
|
60 |
"description": "Adaptive Boosting algorithm that combines weak learners into a strong classifier",
|
61 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
62 |
},
|
63 |
"pca": {
|
64 |
"name": "Principal Component Analysis",
|
65 |
"category": "classical_ml",
|
66 |
"description": "A dimensionality reduction technique that finds principal components of data variance",
|
67 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
},
|
69 |
"linear_regression": {
|
70 |
"name": "Linear Regression",
|
71 |
"category": "classical_ml",
|
72 |
"description": "A linear approach to modeling the relationship between variables",
|
73 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
74 |
},
|
75 |
"cnn": {
|
76 |
"name": "Convolutional Neural Network",
|
77 |
"category": "deep_learning",
|
78 |
"description": "Deep learning architecture specialized for processing grid-like data such as images",
|
79 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
},
|
81 |
"lstm": {
|
82 |
"name": "Long Short-Term Memory",
|
83 |
"category": "deep_learning",
|
84 |
"description": "A type of recurrent neural network capable of learning long-term dependencies",
|
85 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
86 |
},
|
87 |
"transformer": {
|
88 |
"name": "Transformer",
|
89 |
"category": "deep_learning",
|
90 |
"description": "Attention-based neural network architecture for sequence-to-sequence tasks",
|
91 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
},
|
93 |
"resnet": {
|
94 |
"name": "ResNet",
|
95 |
"category": "deep_learning",
|
96 |
"description": "Residual Neural Network - a deep CNN architecture with skip connections",
|
97 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
98 |
},
|
99 |
"unet": {
|
100 |
"name": "U-Net",
|
101 |
"category": "deep_learning",
|
102 |
"description": "A CNN architecture for biomedical image segmentation with encoder-decoder structure",
|
103 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
104 |
},
|
105 |
"gan": {
|
106 |
"name": "Generative Adversarial Network",
|
107 |
"category": "deep_learning",
|
108 |
"description": "A framework where two neural networks compete to generate realistic data",
|
109 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
},
|
111 |
"autoencoder": {
|
112 |
"name": "Autoencoder",
|
113 |
"category": "deep_learning",
|
114 |
"description": "Neural networks that learn efficient representations by encoding and decoding data",
|
115 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
},
|
117 |
"vgg": {
|
118 |
"name": "VGG",
|
119 |
"category": "deep_learning",
|
120 |
"description": "Very Deep Convolutional Networks - a CNN architecture with small convolution filters",
|
121 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
122 |
},
|
123 |
"inception": {
|
124 |
"name": "Inception",
|
125 |
"category": "deep_learning",
|
126 |
"description": "CNN architecture that uses inception modules for efficient computation",
|
127 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
},
|
129 |
"rnn": {
|
130 |
"name": "Recurrent Neural Network",
|
131 |
"category": "deep_learning",
|
132 |
"description": "Neural networks with memory that can process sequences of data",
|
133 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
},
|
135 |
"gru": {
|
136 |
"name": "Gated Recurrent Unit",
|
137 |
"category": "deep_learning",
|
138 |
"description": "Simplified variant of LSTM with fewer parameters and faster training",
|
139 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
140 |
},
|
141 |
"yolo": {
|
142 |
"name": "YOLO",
|
143 |
"category": "deep_learning",
|
144 |
"description": "You Only Look Once - real-time object detection algorithm",
|
145 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
},
|
147 |
"capsnet": {
|
148 |
"name": "Capsule Network",
|
149 |
"category": "deep_learning",
|
150 |
"description": "Neural network architecture that uses capsules to better model hierarchical relationships",
|
151 |
-
"synonyms": [
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
"synonyms": ["attention mechanism", "attention", "multi-head attention", "scaled dot-product attention"]
|
158 |
},
|
159 |
"gpt": {
|
160 |
"name": "GPT",
|
161 |
"category": "llms",
|
162 |
"description": "Generative Pre-trained Transformer - OpenAI's large language model family",
|
163 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
},
|
165 |
"claude": {
|
166 |
"name": "Claude",
|
167 |
"category": "llms",
|
168 |
"description": "Anthropic's AI assistant and large language model family",
|
169 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
},
|
171 |
"bert": {
|
172 |
"name": "BERT",
|
173 |
"category": "llms",
|
174 |
"description": "Bidirectional Encoder Representations from Transformers - Google's pre-trained language model",
|
175 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
},
|
177 |
"gemini": {
|
178 |
"name": "Gemini",
|
179 |
"category": "llms",
|
180 |
"description": "Google's multimodal large language model family",
|
181 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
},
|
183 |
"llama": {
|
184 |
"name": "LLaMA",
|
185 |
"category": "llms",
|
186 |
"description": "Large Language Model Meta AI - Meta's open-source language model family",
|
187 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
},
|
189 |
"qwen": {
|
190 |
"name": "Qwen",
|
191 |
"category": "llms",
|
192 |
"description": "Alibaba's large language model series with multilingual capabilities",
|
193 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
},
|
195 |
"deepseek": {
|
196 |
"name": "DeepSeek",
|
197 |
"category": "llms",
|
198 |
"description": "DeepSeek's large language model optimized for code and reasoning",
|
199 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
},
|
201 |
"mistral": {
|
202 |
"name": "Mistral",
|
203 |
"category": "llms",
|
204 |
"description": "Mistral AI's efficient and powerful open-source language models",
|
205 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
},
|
207 |
"palm": {
|
208 |
"name": "PaLM",
|
209 |
"category": "llms",
|
210 |
"description": "Pathways Language Model - Google's large-scale language model",
|
211 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
},
|
213 |
"t5": {
|
214 |
"name": "T5",
|
215 |
"category": "llms",
|
216 |
"description": "Text-to-Text Transfer Transformer - Google's unified text processing model",
|
217 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
},
|
219 |
"roberta": {
|
220 |
"name": "RoBERTa",
|
221 |
"category": "llms",
|
222 |
"description": "Robustly Optimized BERT Pretraining Approach - Meta's improved BERT variant",
|
223 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
224 |
},
|
225 |
"phi": {
|
226 |
"name": "Phi",
|
227 |
"category": "llms",
|
228 |
"description": "Microsoft's small language model series optimized for efficiency",
|
229 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
},
|
231 |
"falcon": {
|
232 |
"name": "Falcon",
|
233 |
"category": "llms",
|
234 |
"description": "Technology Innovation Institute's open-source large language model",
|
235 |
-
"synonyms": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
}
|
237 |
}
|
238 |
}
|
|
|
4 |
"name": "Support Vector Machine",
|
5 |
"category": "classical_ml",
|
6 |
"description": "A supervised learning algorithm that finds optimal hyperplanes for classification and regression tasks",
|
7 |
+
"synonyms": [
|
8 |
+
"support vector machine",
|
9 |
+
"SVM",
|
10 |
+
"support vector classifier",
|
11 |
+
"support vector regression",
|
12 |
+
"SVR"
|
13 |
+
],
|
14 |
+
"blacklist": [
|
15 |
+
"stroke volume monitoring",
|
16 |
+
"severe viral meningitis",
|
17 |
+
"syncope vasovagal mechanisms",
|
18 |
+
"superior vena cava",
|
19 |
+
"small vessel disease"
|
20 |
+
]
|
21 |
},
|
22 |
"decision_tree": {
|
23 |
"name": "Decision Tree",
|
24 |
+
"category": "classical_ml",
|
25 |
"description": "A tree-like model that makes decisions by splitting data based on feature values",
|
26 |
+
"synonyms": [
|
27 |
+
"decision tree",
|
28 |
+
"decision trees",
|
29 |
+
"DT",
|
30 |
+
"CART",
|
31 |
+
"classification tree",
|
32 |
+
"regression tree"
|
33 |
+
]
|
34 |
},
|
35 |
"random_forest": {
|
36 |
"name": "Random Forest",
|
37 |
"category": "classical_ml",
|
38 |
"description": "An ensemble method that combines multiple decision trees for improved accuracy",
|
39 |
+
"synonyms": [
|
40 |
+
"random forest",
|
41 |
+
"RF",
|
42 |
+
"random forests",
|
43 |
+
"forest classifier"
|
44 |
+
],
|
45 |
+
"blacklist": [
|
46 |
+
"radiofrequency",
|
47 |
+
"rheumatoid factor",
|
48 |
+
"risk factor",
|
49 |
+
"renal failure",
|
50 |
+
"respiratory failure",
|
51 |
+
"reticular formation"
|
52 |
+
]
|
53 |
},
|
54 |
"xgboost": {
|
55 |
"name": "XGBoost",
|
56 |
"category": "classical_ml",
|
57 |
"description": "Extreme Gradient Boosting - an optimized gradient boosting framework",
|
58 |
+
"synonyms": [
|
59 |
+
"xgboost",
|
60 |
+
"XGBoost",
|
61 |
+
"extreme gradient boosting",
|
62 |
+
"XGB"
|
63 |
+
]
|
64 |
},
|
65 |
"logistic_regression": {
|
66 |
"name": "Logistic Regression",
|
67 |
"category": "classical_ml",
|
68 |
"description": "A linear model for binary and multiclass classification problems",
|
69 |
+
"synonyms": [
|
70 |
+
"logistic regression",
|
71 |
+
"logit",
|
72 |
+
"logistic model",
|
73 |
+
"LR"
|
74 |
+
]
|
75 |
},
|
76 |
"naive_bayes": {
|
77 |
"name": "Naive Bayes",
|
78 |
"category": "classical_ml",
|
79 |
"description": "A probabilistic classifier based on Bayes' theorem with independence assumptions",
|
80 |
+
"synonyms": [
|
81 |
+
"naive bayes",
|
82 |
+
"Naive Bayes",
|
83 |
+
"NB",
|
84 |
+
"Bayes classifier"
|
85 |
+
]
|
86 |
},
|
87 |
"knn": {
|
88 |
"name": "K-Nearest Neighbors",
|
89 |
"category": "classical_ml",
|
90 |
"description": "A non-parametric method that classifies data points based on the class of their nearest neighbors",
|
91 |
+
"synonyms": [
|
92 |
+
"k-nearest neighbors",
|
93 |
+
"KNN",
|
94 |
+
"k-NN",
|
95 |
+
"nearest neighbor",
|
96 |
+
"k nearest neighbour"
|
97 |
+
]
|
98 |
},
|
99 |
"kmeans": {
|
100 |
"name": "K-Means Clustering",
|
101 |
"category": "classical_ml",
|
102 |
"description": "An unsupervised clustering algorithm that partitions data into k clusters",
|
103 |
+
"synonyms": [
|
104 |
+
"k-means",
|
105 |
+
"K-means",
|
106 |
+
"kmeans",
|
107 |
+
"k-means clustering",
|
108 |
+
"k means"
|
109 |
+
]
|
110 |
},
|
111 |
"gradient_boosting": {
|
112 |
"name": "Gradient Boosting",
|
113 |
"category": "classical_ml",
|
114 |
"description": "An ensemble method that builds models sequentially to correct errors of previous models",
|
115 |
+
"synonyms": [
|
116 |
+
"gradient boosting",
|
117 |
+
"GB",
|
118 |
+
"GBM",
|
119 |
+
"gradient boosted trees",
|
120 |
+
"gradient boosting machine"
|
121 |
+
]
|
122 |
},
|
123 |
"ada_boost": {
|
124 |
"name": "AdaBoost",
|
125 |
"category": "classical_ml",
|
126 |
"description": "Adaptive Boosting algorithm that combines weak learners into a strong classifier",
|
127 |
+
"synonyms": [
|
128 |
+
"AdaBoost",
|
129 |
+
"ada boost",
|
130 |
+
"adaptive boosting",
|
131 |
+
"adaboost"
|
132 |
+
]
|
133 |
},
|
134 |
"pca": {
|
135 |
"name": "Principal Component Analysis",
|
136 |
"category": "classical_ml",
|
137 |
"description": "A dimensionality reduction technique that finds principal components of data variance",
|
138 |
+
"synonyms": [
|
139 |
+
"PCA",
|
140 |
+
"principal component analysis",
|
141 |
+
"principal components"
|
142 |
+
],
|
143 |
+
"blacklist": [
|
144 |
+
"posterior cerebral artery",
|
145 |
+
"prostate cancer antigen",
|
146 |
+
"patient-controlled analgesia",
|
147 |
+
"percutaneous coronary angioplasty",
|
148 |
+
"primary care physician",
|
149 |
+
"polycystic ovary syndrome"
|
150 |
+
]
|
151 |
},
|
152 |
"linear_regression": {
|
153 |
"name": "Linear Regression",
|
154 |
"category": "classical_ml",
|
155 |
"description": "A linear approach to modeling the relationship between variables",
|
156 |
+
"synonyms": [
|
157 |
+
"linear regression",
|
158 |
+
"ordinary least squares",
|
159 |
+
"OLS",
|
160 |
+
"linear model"
|
161 |
+
]
|
162 |
},
|
163 |
"cnn": {
|
164 |
"name": "Convolutional Neural Network",
|
165 |
"category": "deep_learning",
|
166 |
"description": "Deep learning architecture specialized for processing grid-like data such as images",
|
167 |
+
"synonyms": [
|
168 |
+
"convolutional neural network",
|
169 |
+
"CNN",
|
170 |
+
"ConvNet",
|
171 |
+
"convolutional network",
|
172 |
+
"deep convolutional",
|
173 |
+
"conv neural network",
|
174 |
+
"convolution neural network"
|
175 |
+
],
|
176 |
+
"blacklist": [
|
177 |
+
"cranial nerve nuclei",
|
178 |
+
"central nervous system",
|
179 |
+
"chronic kidney disease",
|
180 |
+
"clinical nurse navigator",
|
181 |
+
"calcineurin inhibitor"
|
182 |
+
]
|
183 |
},
|
184 |
"lstm": {
|
185 |
"name": "Long Short-Term Memory",
|
186 |
"category": "deep_learning",
|
187 |
"description": "A type of recurrent neural network capable of learning long-term dependencies",
|
188 |
+
"synonyms": [
|
189 |
+
"LSTM",
|
190 |
+
"long short-term memory",
|
191 |
+
"long short term memory",
|
192 |
+
"LSTM network"
|
193 |
+
]
|
194 |
},
|
195 |
"transformer": {
|
196 |
"name": "Transformer",
|
197 |
"category": "deep_learning",
|
198 |
"description": "Attention-based neural network architecture for sequence-to-sequence tasks",
|
199 |
+
"synonyms": [
|
200 |
+
"transformer",
|
201 |
+
"transformers",
|
202 |
+
"transformer model",
|
203 |
+
"transformer architecture",
|
204 |
+
"self-attention"
|
205 |
+
]
|
206 |
},
|
207 |
"resnet": {
|
208 |
"name": "ResNet",
|
209 |
"category": "deep_learning",
|
210 |
"description": "Residual Neural Network - a deep CNN architecture with skip connections",
|
211 |
+
"synonyms": [
|
212 |
+
"ResNet",
|
213 |
+
"resnet",
|
214 |
+
"residual network",
|
215 |
+
"residual neural network"
|
216 |
+
]
|
217 |
},
|
218 |
"unet": {
|
219 |
"name": "U-Net",
|
220 |
"category": "deep_learning",
|
221 |
"description": "A CNN architecture for biomedical image segmentation with encoder-decoder structure",
|
222 |
+
"synonyms": [
|
223 |
+
"U-Net",
|
224 |
+
"UNet",
|
225 |
+
"u-net",
|
226 |
+
"unet"
|
227 |
+
]
|
228 |
},
|
229 |
"gan": {
|
230 |
"name": "Generative Adversarial Network",
|
231 |
"category": "deep_learning",
|
232 |
"description": "A framework where two neural networks compete to generate realistic data",
|
233 |
+
"synonyms": [
|
234 |
+
"generative adversarial network",
|
235 |
+
"generative adversarial networks",
|
236 |
+
"GANs",
|
237 |
+
"GAN model",
|
238 |
+
"GAN network",
|
239 |
+
"adversarial network",
|
240 |
+
"adversarial training"
|
241 |
+
],
|
242 |
+
"blacklist": [
|
243 |
+
"giant axonal neuropathy",
|
244 |
+
"Giant Axonal Neuropathy",
|
245 |
+
"GAN neuropathy",
|
246 |
+
"axonal neuropathy",
|
247 |
+
"ganglion",
|
248 |
+
"ganglia",
|
249 |
+
"ganglioside",
|
250 |
+
"gangliosides",
|
251 |
+
"ganglionic",
|
252 |
+
"gangrene",
|
253 |
+
"gangrenous",
|
254 |
+
"Ganoderma",
|
255 |
+
"ganoderic",
|
256 |
+
"ganciclovir",
|
257 |
+
"gastric antral nodularity",
|
258 |
+
"gonadotropin-releasing hormone antagonist",
|
259 |
+
"glucosamine",
|
260 |
+
"galactosamine",
|
261 |
+
"N-acetylgalactosamine",
|
262 |
+
"GalNAc"
|
263 |
+
]
|
264 |
},
|
265 |
"autoencoder": {
|
266 |
"name": "Autoencoder",
|
267 |
"category": "deep_learning",
|
268 |
"description": "Neural networks that learn efficient representations by encoding and decoding data",
|
269 |
+
"synonyms": [
|
270 |
+
"autoencoder",
|
271 |
+
"auto-encoder",
|
272 |
+
"autoencoders",
|
273 |
+
"variational autoencoder",
|
274 |
+
"VAE"
|
275 |
+
]
|
276 |
},
|
277 |
"vgg": {
|
278 |
"name": "VGG",
|
279 |
"category": "deep_learning",
|
280 |
"description": "Very Deep Convolutional Networks - a CNN architecture with small convolution filters",
|
281 |
+
"synonyms": [
|
282 |
+
"VGG",
|
283 |
+
"VGG-16",
|
284 |
+
"VGG-19",
|
285 |
+
"VGGNet"
|
286 |
+
]
|
287 |
},
|
288 |
"inception": {
|
289 |
"name": "Inception",
|
290 |
"category": "deep_learning",
|
291 |
"description": "CNN architecture that uses inception modules for efficient computation",
|
292 |
+
"synonyms": [
|
293 |
+
"Inception",
|
294 |
+
"GoogLeNet",
|
295 |
+
"Inception-v3",
|
296 |
+
"Inception-v4",
|
297 |
+
"inception network"
|
298 |
+
]
|
299 |
},
|
300 |
"rnn": {
|
301 |
"name": "Recurrent Neural Network",
|
302 |
"category": "deep_learning",
|
303 |
"description": "Neural networks with memory that can process sequences of data",
|
304 |
+
"synonyms": [
|
305 |
+
"RNN",
|
306 |
+
"recurrent neural network",
|
307 |
+
"recurrent network",
|
308 |
+
"RNNs"
|
309 |
+
],
|
310 |
+
"blacklist": [
|
311 |
+
"ribonuclease",
|
312 |
+
"registered nurse navigator",
|
313 |
+
"reactive nitrogen species"
|
314 |
+
]
|
315 |
},
|
316 |
"gru": {
|
317 |
"name": "Gated Recurrent Unit",
|
318 |
"category": "deep_learning",
|
319 |
"description": "Simplified variant of LSTM with fewer parameters and faster training",
|
320 |
+
"synonyms": [
|
321 |
+
"GRU",
|
322 |
+
"gated recurrent unit",
|
323 |
+
"gated recurrent units",
|
324 |
+
"GRUs"
|
325 |
+
]
|
326 |
},
|
327 |
"yolo": {
|
328 |
"name": "YOLO",
|
329 |
"category": "deep_learning",
|
330 |
"description": "You Only Look Once - real-time object detection algorithm",
|
331 |
+
"synonyms": [
|
332 |
+
"YOLO",
|
333 |
+
"you only look once",
|
334 |
+
"YOLOv3",
|
335 |
+
"YOLOv4",
|
336 |
+
"YOLOv5"
|
337 |
+
]
|
338 |
},
|
339 |
"capsnet": {
|
340 |
"name": "Capsule Network",
|
341 |
"category": "deep_learning",
|
342 |
"description": "Neural network architecture that uses capsules to better model hierarchical relationships",
|
343 |
+
"synonyms": [
|
344 |
+
"CapsNet",
|
345 |
+
"capsule network",
|
346 |
+
"capsule networks",
|
347 |
+
"dynamic routing"
|
348 |
+
]
|
|
|
349 |
},
|
350 |
"gpt": {
|
351 |
"name": "GPT",
|
352 |
"category": "llms",
|
353 |
"description": "Generative Pre-trained Transformer - OpenAI's large language model family",
|
354 |
+
"synonyms": [
|
355 |
+
"GPT",
|
356 |
+
"gpt",
|
357 |
+
"generative pre-trained transformer",
|
358 |
+
"ChatGPT",
|
359 |
+
"GPT-3",
|
360 |
+
"GPT-4",
|
361 |
+
"GPT-4o",
|
362 |
+
"OpenAI GPT"
|
363 |
+
],
|
364 |
+
"blacklist": [
|
365 |
+
"glucose-6-phosphate transporter",
|
366 |
+
"glutamic pyruvic transaminase",
|
367 |
+
"glutathione peroxidase",
|
368 |
+
"glycerophosphate",
|
369 |
+
"guanosine triphosphate"
|
370 |
+
]
|
371 |
},
|
372 |
"claude": {
|
373 |
"name": "Claude",
|
374 |
"category": "llms",
|
375 |
"description": "Anthropic's AI assistant and large language model family",
|
376 |
+
"synonyms": [
|
377 |
+
"Claude",
|
378 |
+
"claude",
|
379 |
+
"Anthropic Claude",
|
380 |
+
"Claude-3",
|
381 |
+
"Claude Sonnet",
|
382 |
+
"Claude Haiku",
|
383 |
+
"Claude Opus"
|
384 |
+
]
|
385 |
},
|
386 |
"bert": {
|
387 |
"name": "BERT",
|
388 |
"category": "llms",
|
389 |
"description": "Bidirectional Encoder Representations from Transformers - Google's pre-trained language model",
|
390 |
+
"synonyms": [
|
391 |
+
"BERT",
|
392 |
+
"bert",
|
393 |
+
"bidirectional encoder representations",
|
394 |
+
"BERT model",
|
395 |
+
"Google BERT"
|
396 |
+
],
|
397 |
+
"blacklist": [
|
398 |
+
"behavioral emergency response team",
|
399 |
+
"biomedical emergency response team",
|
400 |
+
"blood-retinal barrier transport",
|
401 |
+
"bronchial epithelial cell"
|
402 |
+
]
|
403 |
},
|
404 |
"gemini": {
|
405 |
"name": "Gemini",
|
406 |
"category": "llms",
|
407 |
"description": "Google's multimodal large language model family",
|
408 |
+
"synonyms": [
|
409 |
+
"Gemini",
|
410 |
+
"gemini",
|
411 |
+
"Google Gemini",
|
412 |
+
"Gemini Pro",
|
413 |
+
"Gemini Ultra",
|
414 |
+
"Gemini Nano"
|
415 |
+
]
|
416 |
},
|
417 |
"llama": {
|
418 |
"name": "LLaMA",
|
419 |
"category": "llms",
|
420 |
"description": "Large Language Model Meta AI - Meta's open-source language model family",
|
421 |
+
"synonyms": [
|
422 |
+
"LLaMA",
|
423 |
+
"llama",
|
424 |
+
"Llama",
|
425 |
+
"Meta LLaMA",
|
426 |
+
"Llama-2",
|
427 |
+
"Llama 2",
|
428 |
+
"Llama 3",
|
429 |
+
"Code Llama"
|
430 |
+
]
|
431 |
},
|
432 |
"qwen": {
|
433 |
"name": "Qwen",
|
434 |
"category": "llms",
|
435 |
"description": "Alibaba's large language model series with multilingual capabilities",
|
436 |
+
"synonyms": [
|
437 |
+
"Qwen",
|
438 |
+
"qwen",
|
439 |
+
"Alibaba Qwen",
|
440 |
+
"Qwen-7B",
|
441 |
+
"Qwen-14B",
|
442 |
+
"Qwen-72B",
|
443 |
+
"Tongyi Qianwen"
|
444 |
+
]
|
445 |
},
|
446 |
"deepseek": {
|
447 |
"name": "DeepSeek",
|
448 |
"category": "llms",
|
449 |
"description": "DeepSeek's large language model optimized for code and reasoning",
|
450 |
+
"synonyms": [
|
451 |
+
"DeepSeek",
|
452 |
+
"deepseek",
|
453 |
+
"DeepSeek Coder",
|
454 |
+
"DeepSeek LLM",
|
455 |
+
"DeepSeek-V2"
|
456 |
+
]
|
457 |
},
|
458 |
"mistral": {
|
459 |
"name": "Mistral",
|
460 |
"category": "llms",
|
461 |
"description": "Mistral AI's efficient and powerful open-source language models",
|
462 |
+
"synonyms": [
|
463 |
+
"Mistral",
|
464 |
+
"mistral",
|
465 |
+
"Mistral 7B",
|
466 |
+
"Mixtral",
|
467 |
+
"Mistral AI",
|
468 |
+
"Mixtral 8x7B"
|
469 |
+
]
|
470 |
},
|
471 |
"palm": {
|
472 |
"name": "PaLM",
|
473 |
"category": "llms",
|
474 |
"description": "Pathways Language Model - Google's large-scale language model",
|
475 |
+
"synonyms": [
|
476 |
+
"PaLM",
|
477 |
+
"palm",
|
478 |
+
"Pathways Language Model",
|
479 |
+
"PaLM-2",
|
480 |
+
"Google PaLM"
|
481 |
+
]
|
482 |
},
|
483 |
"t5": {
|
484 |
"name": "T5",
|
485 |
"category": "llms",
|
486 |
"description": "Text-to-Text Transfer Transformer - Google's unified text processing model",
|
487 |
+
"synonyms": [
|
488 |
+
"T5",
|
489 |
+
"t5",
|
490 |
+
"text-to-text transfer transformer",
|
491 |
+
"Google T5"
|
492 |
+
],
|
493 |
+
"blacklist": [
|
494 |
+
"T5 vertebra",
|
495 |
+
"T5 spinal",
|
496 |
+
"fifth thoracic vertebra",
|
497 |
+
"thoracic vertebra 5",
|
498 |
+
"T5 nerve root",
|
499 |
+
"T5 dermatome"
|
500 |
+
]
|
501 |
},
|
502 |
"roberta": {
|
503 |
"name": "RoBERTa",
|
504 |
"category": "llms",
|
505 |
"description": "Robustly Optimized BERT Pretraining Approach - Meta's improved BERT variant",
|
506 |
+
"synonyms": [
|
507 |
+
"RoBERTa",
|
508 |
+
"roberta",
|
509 |
+
"robustly optimized BERT",
|
510 |
+
"Meta RoBERTa"
|
511 |
+
]
|
512 |
},
|
513 |
"phi": {
|
514 |
"name": "Phi",
|
515 |
"category": "llms",
|
516 |
"description": "Microsoft's small language model series optimized for efficiency",
|
517 |
+
"synonyms": [
|
518 |
+
"Microsoft Phi",
|
519 |
+
"Microsoft Phi-3",
|
520 |
+
"Microsoft Phi-2",
|
521 |
+
"Microsoft Phi-1",
|
522 |
+
"Phi language model",
|
523 |
+
"Phi LLM",
|
524 |
+
"Phi small language model"
|
525 |
+
],
|
526 |
+
"blacklist": [
|
527 |
+
"phi angle",
|
528 |
+
"phi coefficient",
|
529 |
+
"phi correlation",
|
530 |
+
"dihedral angle",
|
531 |
+
"phi psi angles",
|
532 |
+
"ramachandran plot",
|
533 |
+
"protein phi",
|
534 |
+
"phi torsion",
|
535 |
+
"golden ratio phi",
|
536 |
+
"phi statistic",
|
537 |
+
"phi phenomenon",
|
538 |
+
"phi value analysis",
|
539 |
+
"protected health information",
|
540 |
+
"personal health information",
|
541 |
+
"phosphatidylinositol",
|
542 |
+
"bacteriophage phi",
|
543 |
+
"phage phi",
|
544 |
+
"phi bacteriophage",
|
545 |
+
"phi X174",
|
546 |
+
"phi 6",
|
547 |
+
"phi 29",
|
548 |
+
"phi92",
|
549 |
+
"magnetic flux phi",
|
550 |
+
"flux phi",
|
551 |
+
"phi magnetic",
|
552 |
+
"volumetric flux",
|
553 |
+
"flow rate phi",
|
554 |
+
"phi value",
|
555 |
+
"phi values",
|
556 |
+
"phi analysis",
|
557 |
+
"phi-value analysis",
|
558 |
+
"protein folding phi",
|
559 |
+
"transition state phi",
|
560 |
+
"nucleation condensation phi",
|
561 |
+
"pharmacologic MRI phi",
|
562 |
+
"phMRI",
|
563 |
+
"DICOM phi",
|
564 |
+
"medical imaging phi",
|
565 |
+
"phi function",
|
566 |
+
"phi distribution",
|
567 |
+
"phi parameter",
|
568 |
+
"phi variable",
|
569 |
+
"phi measurement",
|
570 |
+
"phi calculation"
|
571 |
+
]
|
572 |
},
|
573 |
"falcon": {
|
574 |
"name": "Falcon",
|
575 |
"category": "llms",
|
576 |
"description": "Technology Innovation Institute's open-source large language model",
|
577 |
+
"synonyms": [
|
578 |
+
"Falcon",
|
579 |
+
"falcon",
|
580 |
+
"Falcon-7B",
|
581 |
+
"Falcon-40B",
|
582 |
+
"Falcon-180B",
|
583 |
+
"TII Falcon"
|
584 |
+
]
|
585 |
}
|
586 |
}
|
587 |
}
|
data/timeline-cache.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
{
|
2 |
-
"svm-2015":
|
3 |
-
"svm-2016":
|
4 |
-
"svm-2017":
|
5 |
-
"svm-2018":
|
6 |
-
"svm-2019":
|
7 |
"svm-2020": 3552,
|
8 |
-
"svm-2021":
|
9 |
-
"svm-2022":
|
10 |
"svm-2023": 5015,
|
11 |
-
"svm-2024":
|
12 |
"decision_tree-2015": 2690,
|
13 |
"decision_tree-2016": 2822,
|
14 |
"decision_tree-2017": 3089,
|
@@ -17,18 +17,18 @@
|
|
17 |
"decision_tree-2020": 4730,
|
18 |
"decision_tree-2021": 5816,
|
19 |
"decision_tree-2022": 6297,
|
20 |
-
"decision_tree-2023":
|
21 |
-
"decision_tree-2024":
|
22 |
-
"random_forest-2015":
|
23 |
-
"random_forest-2016":
|
24 |
-
"random_forest-2017":
|
25 |
-
"random_forest-2018":
|
26 |
-
"random_forest-2019":
|
27 |
-
"random_forest-2020":
|
28 |
-
"random_forest-2021":
|
29 |
-
"random_forest-2022":
|
30 |
-
"random_forest-2023":
|
31 |
-
"random_forest-2024":
|
32 |
"xgboost-2015": 1,
|
33 |
"xgboost-2016": 3,
|
34 |
"xgboost-2017": 16,
|
@@ -41,14 +41,14 @@
|
|
41 |
"xgboost-2024": 3269,
|
42 |
"logistic_regression-2015": 24898,
|
43 |
"logistic_regression-2016": 26330,
|
44 |
-
"logistic_regression-2017":
|
45 |
-
"logistic_regression-2018":
|
46 |
-
"logistic_regression-2019":
|
47 |
"logistic_regression-2020": 41392,
|
48 |
"logistic_regression-2021": 50426,
|
49 |
-
"logistic_regression-2022":
|
50 |
-
"logistic_regression-2023":
|
51 |
-
"logistic_regression-2024":
|
52 |
"naive_bayes-2015": 1473,
|
53 |
"naive_bayes-2016": 1641,
|
54 |
"naive_bayes-2017": 1790,
|
@@ -58,7 +58,7 @@
|
|
58 |
"naive_bayes-2021": 3505,
|
59 |
"naive_bayes-2022": 3738,
|
60 |
"naive_bayes-2023": 4030,
|
61 |
-
"naive_bayes-2024":
|
62 |
"knn-2015": 574,
|
63 |
"knn-2016": 604,
|
64 |
"knn-2017": 595,
|
@@ -68,27 +68,27 @@
|
|
68 |
"knn-2021": 1507,
|
69 |
"knn-2022": 1829,
|
70 |
"knn-2023": 1875,
|
71 |
-
"knn-2024":
|
72 |
"kmeans-2015": 345,
|
73 |
"kmeans-2016": 353,
|
74 |
-
"kmeans-2017":
|
75 |
"kmeans-2018": 490,
|
76 |
"kmeans-2019": 584,
|
77 |
"kmeans-2020": 730,
|
78 |
-
"kmeans-2021":
|
79 |
"kmeans-2022": 1255,
|
80 |
"kmeans-2023": 1272,
|
81 |
-
"kmeans-2024":
|
82 |
"gradient_boosting-2015": 2774,
|
83 |
"gradient_boosting-2016": 2787,
|
84 |
-
"gradient_boosting-2017":
|
85 |
"gradient_boosting-2018": 3688,
|
86 |
"gradient_boosting-2019": 4101,
|
87 |
"gradient_boosting-2020": 4975,
|
88 |
"gradient_boosting-2021": 6060,
|
89 |
"gradient_boosting-2022": 6674,
|
90 |
"gradient_boosting-2023": 6827,
|
91 |
-
"gradient_boosting-2024":
|
92 |
"ada_boost-2015": 67,
|
93 |
"ada_boost-2016": 76,
|
94 |
"ada_boost-2017": 74,
|
@@ -99,36 +99,36 @@
|
|
99 |
"ada_boost-2022": 363,
|
100 |
"ada_boost-2023": 370,
|
101 |
"ada_boost-2024": 499,
|
102 |
-
"pca-2015":
|
103 |
-
"pca-2016":
|
104 |
-
"pca-2017":
|
105 |
-
"pca-2018":
|
106 |
-
"pca-2019":
|
107 |
-
"pca-2020":
|
108 |
-
"pca-2021":
|
109 |
-
"pca-2022":
|
110 |
-
"pca-2023":
|
111 |
-
"pca-2024":
|
112 |
"linear_regression-2015": 9508,
|
113 |
"linear_regression-2016": 10092,
|
114 |
-
"linear_regression-2017":
|
115 |
-
"linear_regression-2018":
|
116 |
-
"linear_regression-2019":
|
117 |
"linear_regression-2020": 15565,
|
118 |
-
"linear_regression-2021":
|
119 |
"linear_regression-2022": 19244,
|
120 |
-
"linear_regression-2023":
|
121 |
-
"linear_regression-2024":
|
122 |
"cnn-2015": 116,
|
123 |
"cnn-2016": 273,
|
124 |
-
"cnn-2017":
|
125 |
-
"cnn-2018":
|
126 |
-
"cnn-2019":
|
127 |
-
"cnn-2020":
|
128 |
-
"cnn-2021":
|
129 |
-
"cnn-2022":
|
130 |
-
"cnn-2023":
|
131 |
-
"cnn-2024":
|
132 |
"lstm-2015": 21,
|
133 |
"lstm-2016": 40,
|
134 |
"lstm-2017": 117,
|
@@ -138,18 +138,17 @@
|
|
138 |
"lstm-2021": 1334,
|
139 |
"lstm-2022": 1969,
|
140 |
"lstm-2023": 1826,
|
141 |
-
"lstm-2024":
|
142 |
"transformer-2015": 111,
|
143 |
"transformer-2016": 108,
|
144 |
-
"transformer-2017":
|
145 |
"transformer-2018": 138,
|
146 |
"transformer-2019": 184,
|
147 |
"transformer-2020": 354,
|
148 |
"transformer-2021": 683,
|
149 |
"transformer-2022": 1698,
|
150 |
-
"transformer-2023":
|
151 |
-
"transformer-2024":
|
152 |
-
"resnet-2015": 2,
|
153 |
"resnet-2016": 4,
|
154 |
"resnet-2017": 23,
|
155 |
"resnet-2018": 65,
|
@@ -167,28 +166,28 @@
|
|
167 |
"unet-2020": 670,
|
168 |
"unet-2021": 1103,
|
169 |
"unet-2022": 1552,
|
170 |
-
"unet-2023":
|
171 |
-
"unet-2024":
|
172 |
-
"gan-2015":
|
173 |
-
"gan-2016":
|
174 |
-
"gan-2017":
|
175 |
-
"gan-2018":
|
176 |
-
"gan-2019":
|
177 |
-
"gan-2020":
|
178 |
-
"gan-2021":
|
179 |
-
"gan-2022":
|
180 |
-
"gan-2023":
|
181 |
-
"gan-2024":
|
182 |
"autoencoder-2015": 44,
|
183 |
"autoencoder-2016": 102,
|
184 |
-
"autoencoder-2017":
|
185 |
"autoencoder-2018": 300,
|
186 |
"autoencoder-2019": 397,
|
187 |
"autoencoder-2020": 563,
|
188 |
"autoencoder-2021": 821,
|
189 |
"autoencoder-2022": 1075,
|
190 |
"autoencoder-2023": 1181,
|
191 |
-
"autoencoder-2024":
|
192 |
"vgg-2015": 4,
|
193 |
"vgg-2016": 10,
|
194 |
"vgg-2017": 25,
|
@@ -207,8 +206,8 @@
|
|
207 |
"inception-2020": 1757,
|
208 |
"inception-2021": 1892,
|
209 |
"inception-2022": 1995,
|
210 |
-
"inception-2023":
|
211 |
-
"inception-2024":
|
212 |
"rnn-2015": 105,
|
213 |
"rnn-2016": 116,
|
214 |
"rnn-2017": 166,
|
@@ -238,7 +237,7 @@
|
|
238 |
"yolo-2021": 246,
|
239 |
"yolo-2022": 588,
|
240 |
"yolo-2023": 774,
|
241 |
-
"yolo-2024":
|
242 |
"capsnet-2015": 8,
|
243 |
"capsnet-2016": 4,
|
244 |
"capsnet-2017": 5,
|
@@ -249,46 +248,36 @@
|
|
249 |
"capsnet-2022": 103,
|
250 |
"capsnet-2023": 82,
|
251 |
"capsnet-2024": 73,
|
252 |
-
"
|
253 |
-
"
|
254 |
-
"
|
255 |
-
"
|
256 |
-
"
|
257 |
-
"
|
258 |
-
"
|
259 |
-
"
|
260 |
-
"
|
261 |
-
"
|
262 |
-
"gpt-2015": 110,
|
263 |
-
"gpt-2016": 93,
|
264 |
-
"gpt-2017": 96,
|
265 |
-
"gpt-2018": 96,
|
266 |
-
"gpt-2019": 97,
|
267 |
-
"gpt-2020": 118,
|
268 |
-
"gpt-2021": 151,
|
269 |
-
"gpt-2022": 167,
|
270 |
-
"gpt-2023": 2314,
|
271 |
-
"gpt-2024": 4243,
|
272 |
"claude-2015": 1555,
|
273 |
"claude-2016": 1864,
|
274 |
-
"claude-2017":
|
275 |
"claude-2018": 2282,
|
276 |
"claude-2019": 2379,
|
277 |
"claude-2020": 2694,
|
278 |
"claude-2021": 3013,
|
279 |
"claude-2022": 2895,
|
280 |
"claude-2023": 2760,
|
281 |
-
"claude-2024":
|
282 |
"bert-2015": 147,
|
283 |
"bert-2016": 152,
|
284 |
-
"bert-2017":
|
285 |
"bert-2018": 142,
|
286 |
"bert-2019": 141,
|
287 |
-
"bert-2020":
|
288 |
"bert-2021": 391,
|
289 |
-
"bert-2022":
|
290 |
-
"bert-2023":
|
291 |
-
"bert-2024":
|
292 |
"gemini-2015": 158,
|
293 |
"gemini-2016": 181,
|
294 |
"gemini-2017": 190,
|
@@ -308,7 +297,7 @@
|
|
308 |
"llama-2021": 72,
|
309 |
"llama-2022": 60,
|
310 |
"llama-2023": 66,
|
311 |
-
"llama-2024":
|
312 |
"qwen-2015": 0,
|
313 |
"qwen-2016": 0,
|
314 |
"qwen-2017": 0,
|
@@ -341,7 +330,7 @@
|
|
341 |
"mistral-2024": 73,
|
342 |
"palm-2015": 1078,
|
343 |
"palm-2016": 1126,
|
344 |
-
"palm-2017":
|
345 |
"palm-2018": 1297,
|
346 |
"palm-2019": 1443,
|
347 |
"palm-2020": 1685,
|
@@ -349,16 +338,16 @@
|
|
349 |
"palm-2022": 1752,
|
350 |
"palm-2023": 1708,
|
351 |
"palm-2024": 1778,
|
352 |
-
"t5-2015":
|
353 |
-
"t5-2016":
|
354 |
-
"t5-2017":
|
355 |
-
"t5-2018":
|
356 |
-
"t5-2019":
|
357 |
-
"t5-2020":
|
358 |
-
"t5-2021":
|
359 |
-
"t5-2022":
|
360 |
-
"t5-2023":
|
361 |
-
"t5-2024":
|
362 |
"roberta-2015": 144,
|
363 |
"roberta-2016": 136,
|
364 |
"roberta-2017": 140,
|
@@ -369,16 +358,16 @@
|
|
369 |
"roberta-2022": 224,
|
370 |
"roberta-2023": 267,
|
371 |
"roberta-2024": 306,
|
372 |
-
"phi-2015":
|
373 |
-
"phi-2016":
|
374 |
-
"phi-2017":
|
375 |
-
"phi-2018":
|
376 |
-
"phi-2019":
|
377 |
-
"phi-2020":
|
378 |
-
"phi-2021":
|
379 |
-
"phi-2022":
|
380 |
-
"phi-2023":
|
381 |
-
"phi-2024":
|
382 |
"falcon-2015": 117,
|
383 |
"falcon-2016": 122,
|
384 |
"falcon-2017": 116,
|
@@ -388,5 +377,5 @@
|
|
388 |
"falcon-2021": 215,
|
389 |
"falcon-2022": 181,
|
390 |
"falcon-2023": 184,
|
391 |
-
"falcon-2024":
|
392 |
}
|
|
|
1 |
{
|
2 |
+
"svm-2015": 2189,
|
3 |
+
"svm-2016": 2218,
|
4 |
+
"svm-2017": 2489,
|
5 |
+
"svm-2018": 2799,
|
6 |
+
"svm-2019": 3134,
|
7 |
"svm-2020": 3552,
|
8 |
+
"svm-2021": 4400,
|
9 |
+
"svm-2022": 5310,
|
10 |
"svm-2023": 5015,
|
11 |
+
"svm-2024": 5566,
|
12 |
"decision_tree-2015": 2690,
|
13 |
"decision_tree-2016": 2822,
|
14 |
"decision_tree-2017": 3089,
|
|
|
17 |
"decision_tree-2020": 4730,
|
18 |
"decision_tree-2021": 5816,
|
19 |
"decision_tree-2022": 6297,
|
20 |
+
"decision_tree-2023": 6107,
|
21 |
+
"decision_tree-2024": 6736,
|
22 |
+
"random_forest-2015": 2150,
|
23 |
+
"random_forest-2016": 2312,
|
24 |
+
"random_forest-2017": 2703,
|
25 |
+
"random_forest-2018": 3253,
|
26 |
+
"random_forest-2019": 4046,
|
27 |
+
"random_forest-2020": 5279,
|
28 |
+
"random_forest-2021": 7049,
|
29 |
+
"random_forest-2022": 8274,
|
30 |
+
"random_forest-2023": 8818,
|
31 |
+
"random_forest-2024": 10650,
|
32 |
"xgboost-2015": 1,
|
33 |
"xgboost-2016": 3,
|
34 |
"xgboost-2017": 16,
|
|
|
41 |
"xgboost-2024": 3269,
|
42 |
"logistic_regression-2015": 24898,
|
43 |
"logistic_regression-2016": 26330,
|
44 |
+
"logistic_regression-2017": 28288,
|
45 |
+
"logistic_regression-2018": 30522,
|
46 |
+
"logistic_regression-2019": 34054,
|
47 |
"logistic_regression-2020": 41392,
|
48 |
"logistic_regression-2021": 50426,
|
49 |
+
"logistic_regression-2022": 53799,
|
50 |
+
"logistic_regression-2023": 50537,
|
51 |
+
"logistic_regression-2024": 54946,
|
52 |
"naive_bayes-2015": 1473,
|
53 |
"naive_bayes-2016": 1641,
|
54 |
"naive_bayes-2017": 1790,
|
|
|
58 |
"naive_bayes-2021": 3505,
|
59 |
"naive_bayes-2022": 3738,
|
60 |
"naive_bayes-2023": 4030,
|
61 |
+
"naive_bayes-2024": 4924,
|
62 |
"knn-2015": 574,
|
63 |
"knn-2016": 604,
|
64 |
"knn-2017": 595,
|
|
|
68 |
"knn-2021": 1507,
|
69 |
"knn-2022": 1829,
|
70 |
"knn-2023": 1875,
|
71 |
+
"knn-2024": 2142,
|
72 |
"kmeans-2015": 345,
|
73 |
"kmeans-2016": 353,
|
74 |
+
"kmeans-2017": 423,
|
75 |
"kmeans-2018": 490,
|
76 |
"kmeans-2019": 584,
|
77 |
"kmeans-2020": 730,
|
78 |
+
"kmeans-2021": 1015,
|
79 |
"kmeans-2022": 1255,
|
80 |
"kmeans-2023": 1272,
|
81 |
+
"kmeans-2024": 1374,
|
82 |
"gradient_boosting-2015": 2774,
|
83 |
"gradient_boosting-2016": 2787,
|
84 |
+
"gradient_boosting-2017": 3101,
|
85 |
"gradient_boosting-2018": 3688,
|
86 |
"gradient_boosting-2019": 4101,
|
87 |
"gradient_boosting-2020": 4975,
|
88 |
"gradient_boosting-2021": 6060,
|
89 |
"gradient_boosting-2022": 6674,
|
90 |
"gradient_boosting-2023": 6827,
|
91 |
+
"gradient_boosting-2024": 7836,
|
92 |
"ada_boost-2015": 67,
|
93 |
"ada_boost-2016": 76,
|
94 |
"ada_boost-2017": 74,
|
|
|
99 |
"ada_boost-2022": 363,
|
100 |
"ada_boost-2023": 370,
|
101 |
"ada_boost-2024": 499,
|
102 |
+
"pca-2015": 6415,
|
103 |
+
"pca-2016": 6688,
|
104 |
+
"pca-2017": 6963,
|
105 |
+
"pca-2018": 7483,
|
106 |
+
"pca-2019": 8223,
|
107 |
+
"pca-2020": 9088,
|
108 |
+
"pca-2021": 9994,
|
109 |
+
"pca-2022": 10221,
|
110 |
+
"pca-2023": 9369,
|
111 |
+
"pca-2024": 9672,
|
112 |
"linear_regression-2015": 9508,
|
113 |
"linear_regression-2016": 10092,
|
114 |
+
"linear_regression-2017": 10636,
|
115 |
+
"linear_regression-2018": 11825,
|
116 |
+
"linear_regression-2019": 13020,
|
117 |
"linear_regression-2020": 15565,
|
118 |
+
"linear_regression-2021": 18228,
|
119 |
"linear_regression-2022": 19244,
|
120 |
+
"linear_regression-2023": 18411,
|
121 |
+
"linear_regression-2024": 19204,
|
122 |
"cnn-2015": 116,
|
123 |
"cnn-2016": 273,
|
124 |
+
"cnn-2017": 718,
|
125 |
+
"cnn-2018": 1671,
|
126 |
+
"cnn-2019": 2905,
|
127 |
+
"cnn-2020": 4246,
|
128 |
+
"cnn-2021": 6342,
|
129 |
+
"cnn-2022": 8057,
|
130 |
+
"cnn-2023": 7299,
|
131 |
+
"cnn-2024": 7416,
|
132 |
"lstm-2015": 21,
|
133 |
"lstm-2016": 40,
|
134 |
"lstm-2017": 117,
|
|
|
138 |
"lstm-2021": 1334,
|
139 |
"lstm-2022": 1969,
|
140 |
"lstm-2023": 1826,
|
141 |
+
"lstm-2024": 2060,
|
142 |
"transformer-2015": 111,
|
143 |
"transformer-2016": 108,
|
144 |
+
"transformer-2017": 101,
|
145 |
"transformer-2018": 138,
|
146 |
"transformer-2019": 184,
|
147 |
"transformer-2020": 354,
|
148 |
"transformer-2021": 683,
|
149 |
"transformer-2022": 1698,
|
150 |
+
"transformer-2023": 3209,
|
151 |
+
"transformer-2024": 4962,
|
|
|
152 |
"resnet-2016": 4,
|
153 |
"resnet-2017": 23,
|
154 |
"resnet-2018": 65,
|
|
|
166 |
"unet-2020": 670,
|
167 |
"unet-2021": 1103,
|
168 |
"unet-2022": 1552,
|
169 |
+
"unet-2023": 1699,
|
170 |
+
"unet-2024": 1819,
|
171 |
+
"gan-2015": 63,
|
172 |
+
"gan-2016": 65,
|
173 |
+
"gan-2017": 66,
|
174 |
+
"gan-2018": 178,
|
175 |
+
"gan-2019": 329,
|
176 |
+
"gan-2020": 629,
|
177 |
+
"gan-2021": 979,
|
178 |
+
"gan-2022": 1237,
|
179 |
+
"gan-2023": 1267,
|
180 |
+
"gan-2024": 1255,
|
181 |
"autoencoder-2015": 44,
|
182 |
"autoencoder-2016": 102,
|
183 |
+
"autoencoder-2017": 161,
|
184 |
"autoencoder-2018": 300,
|
185 |
"autoencoder-2019": 397,
|
186 |
"autoencoder-2020": 563,
|
187 |
"autoencoder-2021": 821,
|
188 |
"autoencoder-2022": 1075,
|
189 |
"autoencoder-2023": 1181,
|
190 |
+
"autoencoder-2024": 1359,
|
191 |
"vgg-2015": 4,
|
192 |
"vgg-2016": 10,
|
193 |
"vgg-2017": 25,
|
|
|
206 |
"inception-2020": 1757,
|
207 |
"inception-2021": 1892,
|
208 |
"inception-2022": 1995,
|
209 |
+
"inception-2023": 1930,
|
210 |
+
"inception-2024": 2026,
|
211 |
"rnn-2015": 105,
|
212 |
"rnn-2016": 116,
|
213 |
"rnn-2017": 166,
|
|
|
237 |
"yolo-2021": 246,
|
238 |
"yolo-2022": 588,
|
239 |
"yolo-2023": 774,
|
240 |
+
"yolo-2024": 887,
|
241 |
"capsnet-2015": 8,
|
242 |
"capsnet-2016": 4,
|
243 |
"capsnet-2017": 5,
|
|
|
248 |
"capsnet-2022": 103,
|
249 |
"capsnet-2023": 82,
|
250 |
"capsnet-2024": 73,
|
251 |
+
"gpt-2015": 88,
|
252 |
+
"gpt-2016": 69,
|
253 |
+
"gpt-2017": 74,
|
254 |
+
"gpt-2018": 75,
|
255 |
+
"gpt-2019": 81,
|
256 |
+
"gpt-2020": 96,
|
257 |
+
"gpt-2021": 126,
|
258 |
+
"gpt-2022": 144,
|
259 |
+
"gpt-2023": 2294,
|
260 |
+
"gpt-2024": 4217,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
"claude-2015": 1555,
|
262 |
"claude-2016": 1864,
|
263 |
+
"claude-2017": 2125,
|
264 |
"claude-2018": 2282,
|
265 |
"claude-2019": 2379,
|
266 |
"claude-2020": 2694,
|
267 |
"claude-2021": 3013,
|
268 |
"claude-2022": 2895,
|
269 |
"claude-2023": 2760,
|
270 |
+
"claude-2024": 2980,
|
271 |
"bert-2015": 147,
|
272 |
"bert-2016": 152,
|
273 |
+
"bert-2017": 128,
|
274 |
"bert-2018": 142,
|
275 |
"bert-2019": 141,
|
276 |
+
"bert-2020": 226,
|
277 |
"bert-2021": 391,
|
278 |
+
"bert-2022": 587,
|
279 |
+
"bert-2023": 576,
|
280 |
+
"bert-2024": 704,
|
281 |
"gemini-2015": 158,
|
282 |
"gemini-2016": 181,
|
283 |
"gemini-2017": 190,
|
|
|
297 |
"llama-2021": 72,
|
298 |
"llama-2022": 60,
|
299 |
"llama-2023": 66,
|
300 |
+
"llama-2024": 225,
|
301 |
"qwen-2015": 0,
|
302 |
"qwen-2016": 0,
|
303 |
"qwen-2017": 0,
|
|
|
330 |
"mistral-2024": 73,
|
331 |
"palm-2015": 1078,
|
332 |
"palm-2016": 1126,
|
333 |
+
"palm-2017": 1297,
|
334 |
"palm-2018": 1297,
|
335 |
"palm-2019": 1443,
|
336 |
"palm-2020": 1685,
|
|
|
338 |
"palm-2022": 1752,
|
339 |
"palm-2023": 1708,
|
340 |
"palm-2024": 1778,
|
341 |
+
"t5-2015": 524,
|
342 |
+
"t5-2016": 465,
|
343 |
+
"t5-2017": 583,
|
344 |
+
"t5-2018": 637,
|
345 |
+
"t5-2019": 661,
|
346 |
+
"t5-2020": 724,
|
347 |
+
"t5-2021": 807,
|
348 |
+
"t5-2022": 831,
|
349 |
+
"t5-2023": 857,
|
350 |
+
"t5-2024": 921,
|
351 |
"roberta-2015": 144,
|
352 |
"roberta-2016": 136,
|
353 |
"roberta-2017": 140,
|
|
|
358 |
"roberta-2022": 224,
|
359 |
"roberta-2023": 267,
|
360 |
"roberta-2024": 306,
|
361 |
+
"phi-2015": 1,
|
362 |
+
"phi-2016": 1,
|
363 |
+
"phi-2017": 2,
|
364 |
+
"phi-2018": 5,
|
365 |
+
"phi-2019": 1,
|
366 |
+
"phi-2020": 2,
|
367 |
+
"phi-2021": 5,
|
368 |
+
"phi-2022": 5,
|
369 |
+
"phi-2023": 2,
|
370 |
+
"phi-2024": 6,
|
371 |
"falcon-2015": 117,
|
372 |
"falcon-2016": 122,
|
373 |
"falcon-2017": 116,
|
|
|
377 |
"falcon-2021": 215,
|
378 |
"falcon-2022": 181,
|
379 |
"falcon-2023": 184,
|
380 |
+
"falcon-2024": 184
|
381 |
}
|
frontend/index.html
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
<!doctype html>
|
2 |
<html lang="en">
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
</
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
13 |
</html>
|
|
|
1 |
<!doctype html>
|
2 |
<html lang="en">
|
3 |
+
|
4 |
+
<head>
|
5 |
+
<meta charset="UTF-8" />
|
6 |
+
<link rel="icon" type="image/svg+xml" href="/vite.svg" />
|
7 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
8 |
+
<title>MedicalAIWiki</title>
|
9 |
+
</head>
|
10 |
+
|
11 |
+
<body>
|
12 |
+
<div id="root"></div>
|
13 |
+
<script type="module" src="/src/main.tsx"></script>
|
14 |
+
</body>
|
15 |
+
|
16 |
</html>
|
frontend/src/components/Navbar.tsx
CHANGED
@@ -12,7 +12,7 @@ const Navbar: React.FC = () => {
|
|
12 |
<div className="flex items-center">
|
13 |
<Link to="/" className="flex items-center space-x-2">
|
14 |
<BarChart3 className="h-8 w-8 text-blue-600" />
|
15 |
-
<span className="text-xl font-bold text-gray-900">
|
16 |
</Link>
|
17 |
</div>
|
18 |
|
|
|
12 |
<div className="flex items-center">
|
13 |
<Link to="/" className="flex items-center space-x-2">
|
14 |
<BarChart3 className="h-8 w-8 text-blue-600" />
|
15 |
+
<span className="text-xl font-bold text-gray-900">Medical AI Wiki</span>
|
16 |
</Link>
|
17 |
</div>
|
18 |
|