Spaces:
Sleeping
Sleeping
File size: 11,404 Bytes
f850bde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Persistent Storage Setup for Hugging Face Spaces
This guide explains how to set up and use persistent storage in Hugging Face Spaces for your LMM-Vibes application.
## Overview
Hugging Face Spaces provides persistent storage at the `/data` directory that persists across app restarts and deployments. This storage is perfect for:
- Caching models and datasets
- Storing user uploads and results
- Maintaining application state
- Saving experiment results
## Quick Start
### 1. Automatic Setup (Already Implemented)
Your application automatically detects and configures persistent storage when running in Hugging Face Spaces:
```python
# This is already handled in app.py
if is_persistent_storage_available():
# Configure HF cache to persistent storage
hf_home = get_hf_home_dir()
os.environ.setdefault("HF_HOME", str(hf_home))
# Set cache directories
cache_dir = get_cache_dir()
os.environ.setdefault("TRANSFORMERS_CACHE", str(cache_dir / "transformers"))
os.environ.setdefault("HF_DATASETS_CACHE", str(cache_dir / "datasets"))
```
### 2. Storage Structure
When persistent storage is available, your data is organized as follows:
```
/data/
βββ app_data/ # Main application data
β βββ experiments/ # Pipeline results and experiments
β βββ dataframes/ # Saved pandas DataFrames
β βββ logs/ # Application logs
β βββ uploads/ # User uploaded files
βββ .cache/ # Application cache
β βββ transformers/ # Hugging Face Transformers cache
β βββ datasets/ # Hugging Face Datasets cache
βββ .huggingface/ # Hugging Face model cache
```
## Usage Examples
### Saving Data
```python
from lmmvibes.utils.persistent_storage import (
save_data_to_persistent,
save_uploaded_file
)
# Save binary data
data_bytes = b"your binary data"
saved_path = save_data_to_persistent(
data=data_bytes,
filename="my_data.bin",
subdirectory="experiments"
)
# Save uploaded file from Gradio
def handle_upload(uploaded_file):
if uploaded_file:
saved_path = save_uploaded_file(uploaded_file, "user_upload.zip")
return f"Saved to: {saved_path}"
```
### Loading Data
```python
from lmmvibes.utils.persistent_storage import load_data_from_persistent
# Load binary data
data_bytes = load_data_from_persistent("my_data.bin", "experiments")
if data_bytes:
# Process the data
data = data_bytes.decode('utf-8')
```
### Listing Files
```python
from lmmvibes.utils.persistent_storage import list_persistent_files
# List all files
all_files = list_persistent_files()
# List specific types of files
json_files = list_persistent_files(subdirectory="experiments", pattern="*.json")
parquet_files = list_persistent_files(subdirectory="dataframes", pattern="*.parquet")
```
### Checking Storage Status
```python
from lmmvibes.utils.persistent_storage import get_storage_info
info = get_storage_info()
print(f"Persistent storage available: {info['persistent_available']}")
print(f"Data directory: {info['data_dir']}")
print(f"Free space: {info['storage_paths']['free_gb']:.1f}GB")
```
## Integration with Your Application
### 1. Data Loading
Your application already uses persistent storage for loading pipeline results:
```python
# In data_loader.py - automatically uses persistent storage when available
def load_pipeline_results(results_dir: str):
# The function automatically checks for data in persistent storage
# Falls back to local storage if persistent storage is not available
pass
```
### 2. Caching
The application automatically caches data in persistent storage:
```python
# In data_loader.py - DataCache uses persistent storage when available
class DataCache:
@classmethod
def get(cls, key: str):
# Check persistent storage first, then memory cache
return cls._cache.get(key)
```
### 3. User Uploads
For handling user uploads in Gradio:
```python
import gradio as gr
from lmmvibes.utils.persistent_storage import save_uploaded_file
def handle_file_upload(file):
if file:
saved_path = save_uploaded_file(file, "user_upload.zip")
if saved_path:
return f"β
File saved to persistent storage: {saved_path.name}"
else:
return "β Failed to save - persistent storage not available"
return "β οΈ No file uploaded"
# In your Gradio interface
with gr.Blocks() as demo:
file_input = gr.File(label="Upload data")
upload_btn = gr.Button("Save to persistent storage")
result = gr.Textbox(label="Status")
upload_btn.click(handle_file_upload, inputs=[file_input], outputs=[result])
```
## Best Practices
### 1. Check Availability
Always check if persistent storage is available before trying to use it:
```python
from lmmvibes.utils.persistent_storage import is_persistent_storage_available
if is_persistent_storage_available():
# Use persistent storage
save_data_to_persistent(data, "important_data.json")
else:
# Fall back to local storage or in-memory
print("Persistent storage not available")
```
### 2. Organize Data
Use subdirectories to organize your data:
```python
# Save experiments in their own directory
save_data_to_persistent(
data=experiment_data,
filename=f"{experiment_name}_results.json",
subdirectory="experiments"
)
# Save dataframes separately
save_data_to_persistent(
data=dataframe_bytes,
filename=f"{dataset_name}_data.parquet",
subdirectory="dataframes"
)
```
### 3. Handle Errors Gracefully
```python
def safe_save_data(data, filename):
try:
saved_path = save_data_to_persistent(data, filename)
if saved_path:
return f"β
Saved to {saved_path}"
else:
return "β Failed to save - storage not available"
except Exception as e:
return f"β Error saving data: {e}"
```
### 4. Clean Up Old Data
Periodically clean up old files to manage storage space:
```python
from lmmvibes.utils.persistent_storage import list_persistent_files, delete_persistent_file
def cleanup_old_files(days_old=30):
"""Delete files older than specified days."""
import time
cutoff_time = time.time() - (days_old * 24 * 60 * 60)
for file in list_persistent_files():
if file.stat().st_mtime < cutoff_time:
delete_persistent_file(file.name)
```
## Troubleshooting
### 1. Storage Not Available
If persistent storage is not working:
```python
from lmmvibes.utils.persistent_storage import get_storage_info
info = get_storage_info()
print(f"Storage available: {info['persistent_available']}")
print(f"Data directory: {info['data_dir']}")
```
### 2. Permission Issues
If you encounter permission issues:
```python
# The utilities automatically create directories with proper permissions
# If issues persist, check if /data exists and is writable
import os
if os.path.isdir("/data") and os.access("/data", os.W_OK):
print("β
Persistent storage is accessible and writable")
else:
print("β Persistent storage not accessible")
```
### 3. Storage Full
Monitor storage usage:
```python
info = get_storage_info()
if info['storage_paths']:
usage_pct = (info['storage_paths']['used_gb'] / info['storage_paths']['total_gb']) * 100
if usage_pct > 90:
print(f"β οΈ Storage nearly full: {usage_pct:.1f}% used")
# Implement cleanup logic
```
## Migration from Local Storage
If you're migrating from local storage to persistent storage:
1. **Backup existing data**: Copy your local `data/` directory to persistent storage
2. **Update paths**: Use the persistent storage utilities instead of hardcoded paths
3. **Test thoroughly**: Ensure all functionality works with persistent storage
4. **Monitor usage**: Keep track of storage usage and implement cleanup
## Example: Complete Integration
Here's a complete example of integrating persistent storage into your application:
```python
import gradio as gr
import json
import pandas as pd
from lmmvibes.utils.persistent_storage import (
save_data_to_persistent,
load_data_from_persistent,
list_persistent_files,
get_storage_info,
is_persistent_storage_available
)
def save_experiment_results(results_data, experiment_name):
"""Save experiment results to persistent storage."""
if not is_persistent_storage_available():
return "β Persistent storage not available"
try:
results_json = json.dumps(results_data, indent=2)
results_bytes = results_json.encode('utf-8')
filename = f"{experiment_name}_results.json"
saved_path = save_data_to_persistent(
data=results_bytes,
filename=filename,
subdirectory="experiments"
)
if saved_path:
return f"β
Saved experiment to: {saved_path.name}"
else:
return "β Failed to save experiment"
except Exception as e:
return f"β Error: {e}"
def load_experiment_results(experiment_name):
"""Load experiment results from persistent storage."""
filename = f"{experiment_name}_results.json"
results_bytes = load_data_from_persistent(
filename=filename,
subdirectory="experiments"
)
if results_bytes:
results_data = json.loads(results_bytes.decode('utf-8'))
return json.dumps(results_data, indent=2)
else:
return "No results found"
def get_available_experiments():
"""List all available experiments."""
experiment_files = list_persistent_files(subdirectory="experiments", pattern="*_results.json")
if experiment_files:
return "\n".join([f.name for f in experiment_files])
else:
return "No experiments found"
# Gradio interface
with gr.Blocks(title="Persistent Storage Demo") as demo:
gr.Markdown("# Persistent Storage Demo")
with gr.Tab("Save Experiment"):
experiment_name = gr.Textbox(label="Experiment Name")
results_json = gr.Textbox(label="Results (JSON)", lines=5)
save_btn = gr.Button("Save Experiment")
save_result = gr.Textbox(label="Save Result")
save_btn.click(
save_experiment_results,
inputs=[results_json, experiment_name],
outputs=[save_result]
)
with gr.Tab("Load Experiment"):
load_experiment_name = gr.Textbox(label="Experiment Name")
load_btn = gr.Button("Load Experiment")
load_result = gr.Textbox(label="Loaded Results", lines=10)
load_btn.click(
load_experiment_results,
inputs=[load_experiment_name],
outputs=[load_result]
)
with gr.Tab("Storage Info"):
info_btn = gr.Button("Get Storage Info")
storage_info = gr.Textbox(label="Storage Information", lines=10)
def get_info():
info = get_storage_info()
return json.dumps(info, indent=2)
info_btn.click(get_info, outputs=[storage_info])
if __name__ == "__main__":
demo.launch()
```
This comprehensive setup ensures your application can take full advantage of Hugging Face Spaces' persistent storage capabilities while maintaining backward compatibility with local development. |