Spaces:
Sleeping
Sleeping
File size: 34,007 Bytes
4862c84 b369b7e 4862c84 b369b7e 4862c84 b369b7e 4862c84 b369b7e 4862c84 b369b7e 4862c84 b369b7e 4862c84 b369b7e 4862c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 |
"""
Main Gradio application for LMM-Vibes pipeline results visualization.
This module creates a comprehensive Gradio interface for exploring model performance,
cluster analysis, and detailed examples from pipeline output.
"""
import gradio as gr
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import os
from .data_loader import (
load_pipeline_results,
load_property_examples,
scan_for_result_subfolders,
validate_results_directory,
get_available_models
)
from .utils import (
compute_model_rankings,
create_model_summary_card,
format_cluster_dataframe,
create_frequency_comparison_table,
create_frequency_comparison_plots,
search_clusters_by_text,
get_top_clusters_for_model,
create_interactive_cluster_viewer,
get_cluster_statistics,
get_unique_values_for_dropdowns,
get_example_data,
format_examples_display,
get_total_clusters_count
)
# ---------------------------------------------------------------------------
# NEW: centralised state + logic split into per-tab modules
# ---------------------------------------------------------------------------
from .state import app_state, BASE_RESULTS_DIR
# Tab-specific logic (moved out of this file)
from .load_data_tab import (
load_data,
get_available_experiments,
get_experiment_choices,
refresh_experiment_dropdown,
load_experiment_data,
)
from .overview_tab import create_overview
from .clusters_tab import view_clusters_interactive, view_clusters_table
from .examples_tab import (
get_dropdown_choices,
update_example_dropdowns,
view_examples,
)
# Frequency and debug remain
from .frequency_tab import create_frequency_comparison, create_frequency_plots
from .debug_tab import debug_data_structure
from .plots_tab import create_plots_tab, create_plot_with_toggle, update_quality_metric_dropdown, update_quality_metric_visibility
# app_state and BASE_RESULTS_DIR now come from vis_gradio.state
def update_top_n_slider_maximum():
"""Update the top N slider maximum based on total clusters in loaded data."""
from .state import app_state
if not app_state.get("metrics"):
return gr.Slider(minimum=1, maximum=10, value=3, step=1)
total_clusters = get_total_clusters_count(app_state["metrics"])
max_value = max(10, total_clusters) # At least 10, or total clusters if more
return gr.Slider(
label="Top N Clusters per Model",
minimum=1,
maximum=max_value,
value=min(3, max_value),
step=1,
info=f"Number of top clusters to show per model (max: {total_clusters})"
)
def create_app() -> gr.Blocks:
"""Create the main Gradio application."""
# Custom CSS for minimal margins and better sidebar layout
custom_css = """
/* Universal reset for all elements */
* {
box-sizing: border-box !important;
}
.main-container {
max-width: 100% !important;
margin: 0 !important;
padding: 5px 0 0 8px !important;
}
.gradio-container {
max-width: 100% !important;
margin: 0 !important;
padding: 5px 0 0 8px !important;
}
.tabs {
margin: 0 !important;
padding: 0 !important;
}
.tab-nav {
margin: 0 !important;
padding: 0 !important;
}
.tab-content {
margin: 0 !important;
padding: 5px 0 2px 8px !important;
}
.sidebar {
border-right: 1px solid #e0e0e0;
background-color: #f8f9fa;
padding: 8px !important;
}
.main-content {
padding: 5px 0 2px 8px !important;
}
/* Additional selectors to override Gradio's default margins */
.block {
margin: 0 !important;
padding: 2px 0 2px 8px !important;
}
.form {
margin: 0 !important;
padding: 0 !important;
}
body {
margin: 0 !important;
padding: 5px 0 0 8px !important;
}
.app {
margin: 0 !important;
padding: 5px 0 0 8px !important;
}
/* Target specific Gradio container classes */
.gradio-row {
margin: 0 !important;
padding: 0 !important;
}
.gradio-column {
margin: 0 !important;
padding: 0 0 0 8px !important;
}
/* Override any container padding */
.container {
padding: 5px 0 0 8px !important;
margin: 0 !important;
}
/* Target the root element */
#root {
padding: 5px 0 0 8px !important;
margin: 0 !important;
}
/* Make sure no right padding on wrapper elements */
.wrap {
padding: 0 !important;
margin: 0 !important;
}
/* Aggressive targeting of common Gradio elements */
div[class*="gradio"] {
padding-right: 0 !important;
margin-right: 0 !important;
}
/* Target any div that might have padding */
.gradio-blocks > div,
.gradio-blocks div[style*="padding"] {
padding-right: 0 !important;
margin-right: 0 !important;
}
/* Ensure content fills width */
.gradio-blocks {
width: 100% !important;
max-width: 100% !important;
padding: 5px 0 0 8px !important;
margin: 0 !important;
}
"""
with gr.Blocks(title="LMM-Vibes Pipeline Results Explorer", theme=gr.themes.Soft(), css=custom_css) as app:
gr.Markdown("""
**Comprehensive analysis of model behavioral properties and performance**
Upload your pipeline results directory to explore model performance, cluster analysis, and detailed examples.
""")
with gr.Row():
# Sidebar for data loading and model selection
with gr.Column(scale=1, min_width=300, elem_classes=["sidebar"]):
gr.Markdown("### Load Data")
if BASE_RESULTS_DIR:
gr.Markdown(f"**Base Results Directory:** `{BASE_RESULTS_DIR}`")
gr.Markdown("**WARNING: this might take a while to load**")
gr.Markdown("Select an experiment from the dropdown below to load its results.")
else:
gr.Markdown("Provide the path to your pipeline results directory containing either:")
gr.Markdown("β’ **Legacy format**: `model_stats.json` + `clustered_results.jsonl`")
gr.Markdown("β’ **Functional format**: `model_cluster_scores.json` + `cluster_scores.json` + `model_scores.json` + `clustered_results.jsonl`")
gr.Markdown("*The app will automatically detect which format you're using.*")
if BASE_RESULTS_DIR:
experiment_dropdown = gr.Dropdown(
label="Select Experiment",
choices=get_experiment_choices(),
value="Select an experiment...",
info="Choose an experiment to load its results"
)
else:
results_dir_input = gr.Textbox(
label="Results Directory Path",
placeholder="/path/to/your/results/directory",
info="Directory containing pipeline results (legacy or functional format)"
)
load_btn = gr.Button("Load Data", variant="primary")
data_status = gr.Markdown("")
models_info = gr.Markdown("")
# Model selection (will be updated after loading)
selected_models = gr.CheckboxGroup(
label="Select Models for Analysis",
choices=[],
value=[],
info="Choose which models to include in comparisons"
)
# Main content area with reduced margins
with gr.Column(scale=4, elem_classes=["main-content"]):
with gr.Tabs():
# Tab 1: Overview
with gr.TabItem("π Overview"):
with gr.Row():
min_cluster_size = gr.Slider(
label="Minimum Cluster Size",
minimum=1, maximum=50, value=5, step=1,
info="Hide clusters with fewer than this many examples"
)
score_significant_only = gr.Checkbox(
label="Show Only Frequency Significant Clusters",
value=False,
info="Only show clusters where the distinctiveness score is statistically significant"
)
quality_significant_only = gr.Checkbox(
label="Show Only Quality Significant Clusters",
value=False,
info="Only show clusters where the quality score is statistically significant"
)
with gr.Row():
sort_by = gr.Dropdown(
label="Sort Clusters By",
choices=[
("Proportion Delta (Descending)", "salience_desc"),
("Proportion Delta (Ascending)", "salience_asc"),
("Quality (Ascending)", "quality_asc"),
("Quality (Descending)", "quality_desc"),
("Frequency (Descending)", "frequency_desc"),
("Frequency (Ascending)", "frequency_asc")
],
value="quality_asc",
info="How to sort clusters within each model card"
)
top_n_overview = gr.Slider(
label="Top N Clusters per Model",
minimum=1, maximum=10, value=3, step=1,
info="Number of top clusters to show per model"
)
overview_display = gr.HTML(label="Model Overview")
refresh_overview_btn = gr.Button("Refresh Overview")
# Tab 2: View Clusters
with gr.TabItem("π View Clusters"):
gr.Markdown("### Interactive Cluster Viewer")
gr.Markdown("Explore clusters with detailed property descriptions. Click on clusters to expand and view all properties within each cluster.")
with gr.Row():
search_clusters = gr.Textbox(
label="Search Clusters",
placeholder="Search in cluster descriptions...",
info="Search for specific terms in cluster descriptions only"
)
clusters_display = gr.HTML(
label="Interactive Cluster Viewer",
value="<p style='color: #666; padding: 20px;'>Load data and select models to view clusters</p>"
)
refresh_clusters_btn = gr.Button("Refresh Clusters")
# Tab 3: View Examples
with gr.TabItem("π View Examples"):
# gr.Markdown("### Individual Example Viewer")
# gr.Markdown("Explore individual examples with full prompts, model responses, and property information. Click on examples to expand and view full details.")
with gr.Row():
search_examples = gr.Textbox(
label="Search Clusters",
placeholder="Search in cluster descriptions...",
info="Search for specific terms in cluster descriptions to filter examples"
)
with gr.Row():
with gr.Column(scale=1):
example_prompt_dropdown = gr.Dropdown(
label="Select Prompt",
choices=["All Prompts"],
value="All Prompts",
info="Choose a specific prompt or 'All Prompts'"
)
with gr.Column(scale=1):
example_model_dropdown = gr.Dropdown(
label="Select Model",
choices=["All Models"],
value="All Models",
info="Choose a specific model or 'All Models'"
)
with gr.Column(scale=1):
example_property_dropdown = gr.Dropdown(
label="Select Cluster (Optional)",
choices=["All Clusters"],
value="All Clusters",
info="Choose a specific cluster or 'All Clusters'"
)
with gr.Row():
max_examples_slider = gr.Slider(
label="Max Examples",
minimum=1, maximum=20, value=5, step=1,
info="Maximum number of examples to display"
)
use_accordion_checkbox = gr.Checkbox(
label="Use Accordion for System/Info Messages",
value=True,
info="Group system and info messages in collapsible sections"
)
pretty_print_checkbox = gr.Checkbox(
label="Pretty-print dictionaries",
value=True,
info="Format embedded dictionaries for readability"
)
show_unexpected_behavior_checkbox = gr.Checkbox(
label="Show Unexpected Behavior Only",
value=False,
info="Filter to show only examples with unexpected behavior"
)
view_examples_btn = gr.Button("View Examples", variant="primary")
examples_display = gr.HTML(
label="Examples",
value="<p style='color: #666; padding: 20px;'>Load data and select filters to view examples</p>"
)
# Tab 4: Frequency Comparison
with gr.TabItem("π Functional Metrics Tables"):
gr.Markdown("View the three tables created by the functional metrics pipeline:")
gr.Markdown("β’ **Model-Cluster Scores**: Per model-cluster combination metrics")
gr.Markdown("β’ **Cluster Scores**: Per cluster metrics (aggregated across all models)")
gr.Markdown("β’ **Model Scores**: Per model metrics (aggregated across all clusters)")
frequency_table_info = gr.Markdown("")
# Three separate tables for the functional metrics
gr.Markdown("### Model-Cluster Scores")
gr.Markdown("Per model-cluster combination metrics")
model_cluster_table = gr.Dataframe(
label="Model-Cluster Scores",
interactive=False,
wrap=True,
max_height=600,
elem_classes=["frequency-comparison-table"],
show_search="search",
pinned_columns=2
)
gr.Markdown("### Cluster Scores")
gr.Markdown("Per cluster metrics (aggregated across all models)")
cluster_table = gr.Dataframe(
label="Cluster Scores",
interactive=False,
wrap=True,
max_height=600,
elem_classes=["frequency-comparison-table"],
show_search="search",
pinned_columns=2
)
gr.Markdown("### Model Scores")
gr.Markdown("Per model metrics (aggregated across all clusters)")
model_table = gr.Dataframe(
label="Model Scores",
interactive=False,
wrap=True,
max_height=600,
elem_classes=["frequency-comparison-table"],
show_search="search"
)
# Plots section has been removed
# Remove all custom CSS styling - use Gradio defaults
# Tab 5: Plots
with gr.TabItem("π Plots"):
plot_display, plot_info, show_ci_checkbox, plot_type_dropdown, quality_metric_dropdown = create_plots_tab()
# (Search Examples tab removed)
# Tab 6: Debug Data
with gr.TabItem("π Debug Data"):
gr.Markdown("### Data Structure Debug")
gr.Markdown("If tables aren't loading correctly, use this tab to inspect your data structure and identify issues.")
debug_display = gr.HTML(
label="Debug Information",
value="<p style='color: #666; padding: 20px;'>Load data to see debug information</p>"
)
debug_btn = gr.Button("Show Debug Info", variant="secondary")
# Event handlers
if BASE_RESULTS_DIR:
# Use dropdown for experiment selection
if 'experiment_dropdown' in locals():
(experiment_dropdown.change(
fn=load_experiment_data,
inputs=[experiment_dropdown],
outputs=[data_status, models_info, selected_models]
).then(
fn=update_example_dropdowns,
outputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown]
).then(
fn=view_examples,
inputs=[
example_prompt_dropdown,
example_model_dropdown,
example_property_dropdown,
max_examples_slider,
use_accordion_checkbox,
pretty_print_checkbox,
search_examples,
show_unexpected_behavior_checkbox,
],
outputs=[examples_display]
).then(
fn=update_top_n_slider_maximum,
outputs=[top_n_overview]
).then(
fn=create_frequency_comparison,
inputs=[selected_models],
outputs=[model_cluster_table, cluster_table, model_table, frequency_table_info]
).then(
fn=create_plot_with_toggle,
inputs=[plot_type_dropdown, quality_metric_dropdown, show_ci_checkbox],
outputs=[plot_display, plot_info]
).then(
fn=update_quality_metric_dropdown,
outputs=[quality_metric_dropdown]
))
else:
# Use textbox for manual path entry
if 'load_btn' in locals() and 'results_dir_input' in locals():
(load_btn.click(
fn=load_data,
inputs=[results_dir_input],
outputs=[data_status, models_info, selected_models]
).then(
fn=update_example_dropdowns,
outputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown]
).then(
fn=view_examples,
inputs=[
example_prompt_dropdown,
example_model_dropdown,
example_property_dropdown,
max_examples_slider,
use_accordion_checkbox,
pretty_print_checkbox,
search_examples,
show_unexpected_behavior_checkbox,
],
outputs=[examples_display]
).then(
fn=update_top_n_slider_maximum,
outputs=[top_n_overview]
).then(
fn=create_frequency_comparison,
inputs=[selected_models],
outputs=[model_cluster_table, cluster_table, model_table, frequency_table_info]
).then(
fn=create_plot_with_toggle,
inputs=[plot_type_dropdown, quality_metric_dropdown, show_ci_checkbox],
outputs=[plot_display, plot_info]
).then(
fn=update_quality_metric_dropdown,
outputs=[quality_metric_dropdown]
))
refresh_overview_btn.click(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
refresh_clusters_btn.click(
fn=view_clusters_interactive,
inputs=[selected_models, search_clusters],
outputs=[clusters_display]
)
# View Examples handlers
view_examples_btn.click(
fn=view_examples,
inputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown, max_examples_slider, use_accordion_checkbox, pretty_print_checkbox, search_examples, show_unexpected_behavior_checkbox],
outputs=[examples_display]
)
# Auto-refresh examples when dropdowns change
example_prompt_dropdown.change(
fn=view_examples,
inputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown, max_examples_slider, use_accordion_checkbox, pretty_print_checkbox, search_examples, show_unexpected_behavior_checkbox],
outputs=[examples_display]
)
example_model_dropdown.change(
fn=view_examples,
inputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown, max_examples_slider, use_accordion_checkbox, pretty_print_checkbox, search_examples, show_unexpected_behavior_checkbox],
outputs=[examples_display]
)
example_property_dropdown.change(
fn=view_examples,
inputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown, max_examples_slider, use_accordion_checkbox, pretty_print_checkbox, search_examples, show_unexpected_behavior_checkbox],
outputs=[examples_display]
)
# Auto-refresh examples when search term changes
search_examples.change(
fn=view_examples,
inputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown, max_examples_slider, use_accordion_checkbox, pretty_print_checkbox, search_examples, show_unexpected_behavior_checkbox],
outputs=[examples_display]
)
# Auto-refresh examples when unexpected behavior checkbox changes
show_unexpected_behavior_checkbox.change(
fn=view_examples,
inputs=[example_prompt_dropdown, example_model_dropdown, example_property_dropdown, max_examples_slider, use_accordion_checkbox, pretty_print_checkbox, search_examples, show_unexpected_behavior_checkbox],
outputs=[examples_display]
)
# Frequency Tab Handlers
freq_inputs = [selected_models]
freq_outputs = [model_cluster_table, cluster_table, model_table, frequency_table_info]
selected_models.change(fn=create_frequency_comparison, inputs=freq_inputs, outputs=freq_outputs)
# (Search Examples tab removed β no search_btn handler required)
debug_btn.click(
fn=debug_data_structure,
outputs=[debug_display]
)
# Plots Tab Handlers
show_ci_checkbox.change(
fn=create_plot_with_toggle,
inputs=[plot_type_dropdown, quality_metric_dropdown, show_ci_checkbox],
outputs=[plot_display, plot_info]
)
# Quality metric dropdown handlers (only for quality plots)
quality_metric_dropdown.change(
fn=create_plot_with_toggle,
inputs=[plot_type_dropdown, quality_metric_dropdown, show_ci_checkbox],
outputs=[plot_display, plot_info]
)
# Update quality metric visibility and plot based on plot type
plot_type_dropdown.change(
fn=update_quality_metric_visibility,
inputs=[plot_type_dropdown],
outputs=[quality_metric_dropdown]
).then(
fn=create_plot_with_toggle,
inputs=[plot_type_dropdown, quality_metric_dropdown, show_ci_checkbox],
outputs=[plot_display, plot_info]
)
# Auto-refresh on model selection change
selected_models.change(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
# Auto-refresh on significance filter changes
score_significant_only.change(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
quality_significant_only.change(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
# Auto-refresh on sort dropdown change
sort_by.change(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
# Auto-refresh on cluster level change
# cluster_level.change(
# fn=create_overview,
# inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
# outputs=[overview_display]
# )
# Auto-refresh on top N change
top_n_overview.change(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
# Auto-refresh on minimum cluster size change
min_cluster_size.change(
fn=create_overview,
inputs=[selected_models, top_n_overview, score_significant_only, quality_significant_only, sort_by, min_cluster_size],
outputs=[overview_display]
)
selected_models.change(
fn=view_clusters_interactive,
inputs=[selected_models, gr.State("fine"), search_clusters],
outputs=[clusters_display]
)
# Auto-refresh clusters when search term changes (with debouncing)
search_clusters.change(
fn=view_clusters_interactive,
inputs=[selected_models, gr.State("fine"), search_clusters],
outputs=[clusters_display]
)
return app
def launch_app(results_dir: Optional[str] = None,
share: bool = False,
server_name: str = "127.0.0.1",
server_port: int = 7860,
**kwargs) -> None:
"""Launch the Gradio application.
Args:
results_dir: Optional path to base results directory containing experiment subfolders
share: Whether to create a public link
server_name: Server address
server_port: Server port
**kwargs: Additional arguments for gr.Blocks.launch()
"""
global BASE_RESULTS_DIR
# Set the global base results directory
if results_dir:
BASE_RESULTS_DIR = results_dir
print(f"π Base results directory set to: {results_dir}")
# Check if it's a valid directory
if not os.path.exists(results_dir):
print(f"β οΈ Warning: Base results directory does not exist: {results_dir}")
BASE_RESULTS_DIR = None
else:
# Scan for available experiments
experiments = get_available_experiments(results_dir)
print(f"π Found {len(experiments)} experiments: {experiments}")
app = create_app()
# Auto-load data if results_dir is provided and contains a single experiment
if results_dir and os.path.exists(results_dir):
experiments = get_available_experiments(results_dir)
if len(experiments) == 1:
# Auto-load the single experiment
experiment_path = os.path.join(results_dir, experiments[0])
try:
clustered_df, model_stats, model_cluster_df, results_path = load_pipeline_results(experiment_path)
app_state['clustered_df'] = clustered_df
app_state['model_stats'] = model_stats
app_state['model_cluster_df'] = model_cluster_df
app_state['results_path'] = results_path
app_state['available_models'] = get_available_models(model_stats)
app_state['current_results_dir'] = experiment_path
print(f"β
Auto-loaded data from: {experiment_path}")
except Exception as e:
print(f"β Failed to auto-load data: {e}")
elif len(experiments) > 1:
print(f"π Multiple experiments found. Please select one from the dropdown.")
print(f"π Launching Gradio app on {server_name}:{server_port}")
print(f"Share mode: {share}")
print(f"π§ Additional kwargs: {kwargs}")
try:
app.launch(
share=share,
server_name=server_name,
server_port=server_port,
show_error=True, # Show detailed error messages
quiet=False, # Show more verbose output
**kwargs
)
except Exception as e:
print(f"β Failed to launch on port {server_port}: {e}")
print("π Trying alternative port configuration...")
# Try with a port range instead of port 0
try:
# Try ports in a reasonable range
for alt_port in [8080, 8081, 8082, 8083, 8084, 8085, 8086, 8087, 8088, 8089]:
try:
print(f"π Trying port {alt_port}...")
app.launch(
share=share,
server_name=server_name,
server_port=alt_port,
show_error=True,
quiet=False,
**kwargs
)
break # If successful, break out of the loop
except Exception as port_error:
if "Cannot find empty port" in str(port_error):
print(f" Port {alt_port} is busy, trying next...")
continue
else:
raise port_error
else:
# If we get here, all ports in our range were busy
raise Exception("All attempted ports (8080-8089) are busy")
except Exception as e2:
print(f"β Failed to launch with alternative ports: {e2}")
print("π‘ Try specifying a different port manually:")
print(f" python -m lmmvibes.vis_gradio.launcher --port 9000")
print(f" python -m lmmvibes.vis_gradio.launcher --auto_port")
raise e2 |