File size: 7,500 Bytes
4862c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76309ef
 
4862c84
 
 
 
 
 
 
 
76309ef
 
4862c84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""
Side-by-side display component for comparing model responses.

This module provides functionality to display two model responses side by side
for comparison, specifically designed for datasets with model_a_response and 
model_b_response fields.
"""

from typing import Dict, Any, Optional
from .conversation_display import convert_to_openai_format, display_openai_conversation_html
import html

def display_side_by_side_responses(
    model_a: str,
    model_b: str, 
    model_a_response: Any,
    model_b_response: Any,
    use_accordion: bool = True,
    pretty_print_dicts: bool = True,
    score: Optional[float] = None,
    winner: Optional[str] = None
) -> str:
    """
    Display two model responses side by side for comparison.
    
    Args:
        model_a: Name of model A
        model_b: Name of model B
        model_a_response: Response data from model A
        model_b_response: Response data from model B
        use_accordion: If True, group system and info messages in collapsible accordions
        pretty_print_dicts: If True, pretty-print embedded dictionaries
        score: Optional score for the comparison
        winner: Optional winner indication ('model_a', 'model_b', or 'tie')
        
    Returns:
        HTML string for side-by-side display
    """
    
    # Convert responses to OpenAI format
    conversation_a = convert_to_openai_format(model_a_response) if model_a_response != 'N/A' else None
    conversation_b = convert_to_openai_format(model_b_response) if model_b_response != 'N/A' else None
    
    # Generate conversation HTML for each model
    if conversation_a:
        html_a = display_openai_conversation_html(
            conversation_a, 
            use_accordion=use_accordion, 
            pretty_print_dicts=pretty_print_dicts,
            evidence=None  # Evidence highlighting is not well-defined for comparisons without a single evidence; caller can adapt if needed
        )
    else:
        html_a = "<p style='color: #dc3545; font-style: italic;'>No response data available</p>"
        
    if conversation_b:
        html_b = display_openai_conversation_html(
            conversation_b, 
            use_accordion=use_accordion, 
            pretty_print_dicts=pretty_print_dicts,
            evidence=None
        )
    else:
        html_b = "<p style='color: #dc3545; font-style: italic;'>No response data available</p>"
    
    # Create winner badges if winner is specified
    winner_badge_a = ""
    winner_badge_b = ""
    if winner:
        if winner == 'model_a':
            winner_badge_a = """
            <span style="
                background: #28a745; 
                color: white; 
                padding: 4px 8px; 
                border-radius: 12px; 
                font-size: 12px; 
                font-weight: bold;
                margin-left: 10px;
            ">
                πŸ† Winner
            </span>
            """
        elif winner == 'model_b':
            winner_badge_b = """
            <span style="
                background: #28a745; 
                color: white; 
                padding: 4px 8px; 
                border-radius: 12px; 
                font-size: 12px; 
                font-weight: bold;
                margin-left: 10px;
            ">
                πŸ† Winner
            </span>
            """
        elif winner == 'tie':
            tie_badge = """
            <span style="
                background: #6c757d; 
                color: white; 
                padding: 4px 8px; 
                border-radius: 12px; 
                font-size: 12px; 
                font-weight: bold;
                margin-left: 10px;
            ">
                🀝 Tie
            </span>
            """
            winner_badge_a = tie_badge
            winner_badge_b = tie_badge
    
    # Add score badge if available
    score_info = ""
    if score is not None and score != 'N/A':
        try:
            score_val = float(score)
            score_color = '#28a745' if score_val >= 0 else '#dc3545'
            score_info = f"""
            <div style="text-align: center; margin-bottom: 15px;">
                <span style="
                    background: {score_color}; 
                    color: white; 
                    padding: 6px 12px; 
                    border-radius: 15px; 
                    font-size: 14px; 
                    font-weight: bold;
                ">
                    Comparison Score: {score_val:.3f}
                </span>
            </div>
            """
        except (ValueError, TypeError):
            pass
    
    # Create the side-by-side layout
    side_by_side_html = f"""
    <div style="margin-bottom: 20px;">
        {score_info}
        <div style="display: flex; gap: 20px; margin-top: 10px;">
            <!-- Model A Column -->
            <div style="flex: 1; border: 2px solid #e9ecef; border-radius: 8px; padding: 15px; background-color: #f8f9fa;">
                <h4 style="margin: 0 0 15px 0; padding-bottom: 10px; border-bottom: 2px solid #dee2e6; color: #495057; display: flex; align-items: center;">
                    <span style="background: #007bff; color: white; padding: 4px 8px; border-radius: 4px; font-size: 12px; margin-right: 10px;">A</span>
                    {html.escape(model_a)}
                    {winner_badge_a}
                </h4>
                <div style="font-size: 13px; line-height: 1.5;">
                    {html_a}
                </div>
            </div>
            
            <!-- Model B Column -->
            <div style="flex: 1; border: 2px solid #e9ecef; border-radius: 8px; padding: 15px; background-color: #f8f9fa;">
                <h4 style="margin: 0 0 15px 0; padding-bottom: 10px; border-bottom: 2px solid #dee2e6; color: #495057; display: flex; align-items: center;">
                    <span style="background: #fd7e14; color: white; padding: 4px 8px; border-radius: 4px; font-size: 12px; margin-right: 10px;">B</span>
                    {html.escape(model_b)}
                    {winner_badge_b}
                </h4>
                <div style="font-size: 13px; line-height: 1.5;">
                    {html_b}
                </div>
            </div>
        </div>
    </div>
    """
    
    return side_by_side_html


def is_side_by_side_dataset(example: Dict[str, Any]) -> bool:
    """
    Check if an example contains side-by-side comparison data.
    
    Args:
        example: Example dictionary from the dataset
        
    Returns:
        True if the example has both model_a_response and model_b_response
    """
    # Check if this is a side-by-side dataset by looking for both model_a_response and model_b_response
    return 'model_a_response' in example and 'model_b_response' in example and \
           example.get('model_a_response') is not None and example.get('model_b_response') is not None


def extract_side_by_side_data(row: Dict[str, Any]) -> Dict[str, Any]:
    """
    Extract side-by-side comparison data from a row.
    
    Args:
        row: Row from the dataset
        
    Returns:
        Dictionary with extracted side-by-side data
    """
    return {
        'model_a': row.get('model_a', 'Model A'),
        'model_b': row.get('model_b', 'Model B'), 
        'model_a_response': row.get('model_a_response', 'N/A'),
        'model_b_response': row.get('model_b_response', 'N/A'),
        'winner': row.get('winner', None),
        'score': row.get('score', None)
    }