Spaces:
Running
Running
File size: 76,730 Bytes
4862c84 76309ef 4862c84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 |
"""
Utility functions for Gradio pipeline results app.
This module contains common utility functions used across different components.
"""
import numpy as np
import pandas as pd
import json
import markdown
import plotly.graph_objects as go
import plotly.express as px
from typing import Dict, List, Any, Optional, Tuple
import html
import ast
# Conversation rendering helpers are now in a dedicated module for clarity
from . import conversation_display as _convdisp
from .conversation_display import (
convert_to_openai_format,
display_openai_conversation_html,
pretty_print_embedded_dicts,
)
# NEW IMPLEMENTATION ---------------------------------------------------
from .metrics_adapter import get_model_clusters, get_all_models
# ---------------------------------------------------------------------------
# NEW helper utilities for FunctionalMetrics format
# ---------------------------------------------------------------------------
def format_confidence_interval(ci: dict | None, decimals: int = 3) -> str:
"""Return a pretty string for a CI dict of the form {"lower": x, "upper": y}."""
if not ci or not isinstance(ci, dict):
return "N/A"
lower, upper = ci.get("lower"), ci.get("upper")
if lower is None or upper is None:
return "N/A"
return f"[{lower:.{decimals}f}, {upper:.{decimals}f}]"
def get_confidence_interval_width(ci: dict | None) -> float | None:
"""Return CI width (upper-lower) if possible."""
if not ci or not isinstance(ci, dict):
return None
lower, upper = ci.get("lower"), ci.get("upper")
if lower is None or upper is None:
return None
return upper - lower
def has_confidence_intervals(record: dict | None) -> bool:
"""Simple check whether any *_ci key with lower/upper exists in a metrics record."""
if not record or not isinstance(record, dict):
return False
for k, v in record.items():
if k.endswith("_ci") and isinstance(v, dict) and {"lower", "upper"}.issubset(v.keys()):
return True
return False
def extract_quality_score(quality_field: Any) -> float | None:
"""Given a quality field that may be a dict of metric values or a scalar, return its mean."""
if quality_field is None:
return None
if isinstance(quality_field, (int, float)):
return float(quality_field)
if isinstance(quality_field, dict) and quality_field:
return float(np.mean(list(quality_field.values())))
return None
# ---------------------------------------------------------------------------
# UPDATED: get_top_clusters_for_model for FunctionalMetrics format
# ---------------------------------------------------------------------------
def get_top_clusters_for_model(metrics: Dict[str, Any], model_name: str, top_n: int = 10) -> List[Tuple[str, Dict[str, Any]]]:
"""Return the top N clusters (by salience) for a given model.
Args:
metrics: The FunctionalMetrics dictionary (3-file format) loaded via data_loader.
model_name: Name of the model to inspect.
top_n: Number of clusters to return.
Returns:
List of (cluster_name, cluster_dict) tuples sorted by descending proportion_delta.
"""
clusters_dict = get_model_clusters(metrics, model_name)
if not clusters_dict:
return []
# Filter out "No properties" clusters
clusters_dict = {k: v for k, v in clusters_dict.items() if k != "No properties"}
sorted_items = sorted(
clusters_dict.items(), key=lambda kv: kv[1].get("proportion_delta", 0), reverse=True
)
return sorted_items[:top_n]
def compute_model_rankings_new(metrics: Dict[str, Any]) -> List[tuple]:
"""Compute rankings of models based on mean salience (proportion_delta).
Args:
metrics: The FunctionalMetrics dict loaded by data_loader.
Returns:
List[Tuple[str, Dict[str, float]]]: sorted list of (model_name, summary_dict)
"""
model_scores: Dict[str, Dict[str, float]] = {}
for model in get_all_models(metrics):
clusters = get_model_clusters(metrics, model)
# Filter out "No properties" clusters
clusters = {k: v for k, v in clusters.items() if k != "No properties"}
if not clusters:
continue
saliences = [c.get("proportion_delta", 0.0) for c in clusters.values()]
model_scores[model] = {
"avg_salience": float(np.mean(saliences)),
"median_salience": float(np.median(saliences)),
"num_clusters": len(saliences),
"top_salience": float(max(saliences)),
"std_salience": float(np.std(saliences)),
}
return sorted(model_scores.items(), key=lambda x: x[1]["avg_salience"], reverse=True)
def create_model_summary_card_new(
model_name: str,
metrics: Dict[str, Any],
top_n: int = 3,
score_significant_only: bool = False,
quality_significant_only: bool = False,
sort_by: str = "quality_asc",
min_cluster_size: int = 1,
) -> str:
"""Generate a **styled** HTML summary card for a single model.
The new implementation recreates the legacy card design the user prefers:
β’ Card header with battle count
β’ Each cluster displayed as a vertically-spaced block (NOT a table)
β’ Frequency, distinctiveness factor and CI inline; quality score right-aligned
"""
clusters_dict = get_model_clusters(metrics, model_name)
if not clusters_dict:
return f"<div style='padding:20px'>No cluster data for {model_name}</div>"
# Filter out "No properties" clusters
clusters_dict = {k: v for k, v in clusters_dict.items() if k != "No properties"}
# Filter clusters ----------------------------------------------------
all_clusters = [c for c in clusters_dict.values() if c.get("size", 0) >= min_cluster_size]
if score_significant_only:
if model_name == "all":
# For "all" model, we don't have proportion_delta_significant, so skip this filter
pass
else:
all_clusters = [c for c in all_clusters if c.get("proportion_delta_significant", False)]
if quality_significant_only:
all_clusters = [c for c in all_clusters if any(c.get("quality_delta_significant", {}).values())]
if not all_clusters:
return f"<div style='padding:20px'>No clusters pass filters for {model_name}</div>"
# Count significant properties ---------------------------------------
significant_frequency_count = 0
significant_quality_count = 0
for cluster in clusters_dict.values():
if cluster.get("size", 0) >= min_cluster_size:
# Count frequency significance
if model_name != "all" and cluster.get("proportion_delta_significant", False):
significant_frequency_count += 1
# Count quality significance (sum across all metrics)
quality_delta_significant = cluster.get("quality_delta_significant", {})
significant_quality_count += sum(quality_delta_significant.values())
# Sort ---------------------------------------------------------------
def _mean_quality(c: dict[str, Any]) -> float:
vals = list(c.get("quality", {}).values())
return float(np.mean(vals)) if vals else 0.0
sort_key_map = {
"quality_asc": (_mean_quality, False),
"quality_desc": (_mean_quality, True),
"frequency_desc": (lambda c: c.get("proportion", 0), True),
"frequency_asc": (lambda c: c.get("proportion", 0), False),
"salience_desc": (lambda c: c.get("proportion_delta", 0) if model_name != "all" else c.get("proportion", 0), True),
"salience_asc": (lambda c: c.get("proportion_delta", 0) if model_name != "all" else c.get("proportion", 0), False),
}
key_fn, reverse = sort_key_map.get(sort_by, (lambda c: c.get("proportion_delta", 0) if model_name != "all" else c.get("proportion", 0), True))
sorted_clusters = sorted(all_clusters, key=key_fn, reverse=reverse)[:top_n]
# Determine total conversations for this model ----------------
if model_name == "all":
# For "all" model, sum the individual model totals to avoid double-counting
model_scores = metrics.get("model_scores", {})
total_battles = sum(model_data.get("size", 0) for model_data in model_scores.values())
else:
model_scores_entry = metrics.get("model_scores", {}).get(model_name, {})
total_battles = model_scores_entry.get("size")
if total_battles is None:
# Fallback: deduplicate example IDs across clusters
total_battles = sum(c.get("size", 0) for c in clusters_dict.values())
# Card header --------------------------------------------------------
html_parts: list[str] = [f"""
<div style="padding: 20px; border:1px solid #e0e0e0; border-radius:8px; margin-bottom:25px;">
<h3 style="margin-top:0; font-size: 20px;">{html.escape(model_name)}</h3>
<p style="margin: 4px 0 8px 0; color:#555; font-size:13px;">
{total_battles} battles Β· Top clusters by frequency
</p>
<p style="margin: 0 0 18px 0; color:#666; font-size:12px;">
π {significant_frequency_count} significant frequency properties Β· {significant_quality_count} significant quality properties
</p>
"""]
# Cluster blocks -----------------------------------------------------
for i, cluster in enumerate(sorted_clusters):
name = html.escape(next(k for k, v in clusters_dict.items() if v is cluster))
prop = cluster.get("proportion", 0)
freq_pct = prop * 100
size = cluster.get("size", 0)
# Check significance flags
is_proportion_significant = False
if model_name != "all":
is_proportion_significant = cluster.get("proportion_delta_significant", False)
quality_delta_significant = cluster.get("quality_delta_significant", {})
is_quality_significant = any(quality_delta_significant.values())
# Create significance indicators
significance_indicators = []
if is_proportion_significant:
significance_indicators.append('<span style="background: #28a745; color: white; padding: 2px 6px; border-radius: 4px; font-size: 10px; font-weight: bold;">FREQ</span>')
if is_quality_significant:
significance_indicators.append('<span style="background: #007bff; color: white; padding: 2px 6px; border-radius: 4px; font-size: 10px; font-weight: bold;">QUAL</span>')
significance_html = " ".join(significance_indicators) if significance_indicators else ""
# Distinctiveness factor heuristic
if model_name == "all":
# For "all" model, proportion_delta doesn't make sense, so show proportion instead
distinct_factor = prop
distinct_text = f"{freq_pct:.1f}% of all conversations"
else:
sal = cluster.get("proportion_delta", 0)
distinct_factor = 1 + (sal / prop) if prop else 1
distinct_text = f"proportion delta: {sal:+.3f}"
# Confidence interval (frequency based)
ci = cluster.get("proportion_ci")
ci_str = format_confidence_interval(ci) if ci else "N/A"
# Quality delta β show each metric separately
quality_delta = cluster.get("quality_delta", {})
quality_delta_html = ""
if quality_delta:
quality_delta_parts = []
for metric_name, delta_value in quality_delta.items():
color = "#28a745" if delta_value >= 0 else "#dc3545"
quality_delta_parts.append(f'<div style="color:{color}; font-weight:500;">{metric_name}: {delta_value:+.3f}</div>')
quality_delta_html = "".join(quality_delta_parts)
else:
quality_delta_html = '<span style="color:#666;">No quality data</span>'
# Get light color for this cluster
cluster_color = get_light_color_for_cluster(name, i)
html_parts.append(f"""
<div style="border-left: 4px solid #4c6ef5; padding: 12px 16px; margin-bottom: 10px; background:{cluster_color}; border-radius: 4px;">
<div style="display:flex; justify-content:space-between; align-items:flex-start;">
<div style="max-width:80%;">
<div style="margin-bottom:4px;">
<strong style="font-size:14px;">{name}</strong>
</div>
<span style="font-size:12px; color:#555;">{freq_pct:.1f}% frequency ({size} out of {total_battles} total) Β· {distinct_text}</span>
</div>
<div style="font-size:12px; font-weight:normal; white-space:nowrap; text-align:right;">
{quality_delta_html}
{significance_html}
</div>
</div>
</div>
""")
# Close card div -----------------------------------------------------
html_parts.append("</div>")
return "\n".join(html_parts)
def format_cluster_dataframe(clustered_df: pd.DataFrame,
selected_models: Optional[List[str]] = None,
cluster_level: str = 'fine') -> pd.DataFrame:
"""Format cluster DataFrame for display in Gradio."""
df = clustered_df.copy()
# Debug information
print(f"DEBUG: format_cluster_dataframe called")
print(f" - Input DataFrame shape: {df.shape}")
print(f" - Selected models: {selected_models}")
print(f" - Available models in data: {df['model'].unique().tolist() if 'model' in df.columns else 'No model column'}")
# Filter by models if specified
if selected_models:
print(f" - Filtering by {len(selected_models)} selected models")
df = df[df['model'].isin(selected_models)]
print(f" - After filtering shape: {df.shape}")
print(f" - Models after filtering: {df['model'].unique().tolist()}")
else:
print(f" - No model filtering applied")
# Select relevant columns based on cluster level using correct column names from pipeline
if cluster_level == 'fine':
id_col = 'property_description_fine_cluster_id'
label_col = 'property_description_fine_cluster_label'
# Also check for alternative naming without prefix
alt_id_col = 'fine_cluster_id'
alt_label_col = 'fine_cluster_label'
else:
id_col = 'property_description_coarse_cluster_id'
label_col = 'property_description_coarse_cluster_label'
# Also check for alternative naming without prefix
alt_id_col = 'coarse_cluster_id'
alt_label_col = 'coarse_cluster_label'
# Try both naming patterns
if id_col in df.columns and label_col in df.columns:
# Use the expected naming pattern
cols = ['question_id', 'model', 'property_description', id_col, label_col, 'score']
elif alt_id_col in df.columns and alt_label_col in df.columns:
# Use the alternative naming pattern
cols = ['question_id', 'model', 'property_description', alt_id_col, alt_label_col, 'score']
else:
# Fall back to basic columns if cluster columns are missing
cols = ['question_id', 'model', 'property_description', 'score']
# Keep only existing columns
available_cols = [col for col in cols if col in df.columns]
df = df[available_cols]
print(f" - Final DataFrame shape: {df.shape}")
print(f" - Final columns: {df.columns.tolist()}")
return df
def truncate_cluster_name(cluster_desc: str, max_length: int = 50) -> str:
"""Truncate cluster description to fit in table column."""
if len(cluster_desc) <= max_length:
return cluster_desc
return cluster_desc[:max_length-3] + "..."
def create_frequency_comparison_table(model_stats: Dict[str, Any],
selected_models: List[str],
cluster_level: str = "fine", # Ignored β kept for backward-compat
top_n: int = 50,
selected_model: str | None = None,
selected_quality_metric: str | None = None) -> pd.DataFrame:
"""Create a comparison table for the new FunctionalMetrics format.
The old signature is kept (cluster_level arg is ignored) so that callers
can be updated incrementally.
"""
if not selected_models:
return pd.DataFrame()
# ------------------------------------------------------------------
# 1. Collect per-model, per-cluster rows
# ------------------------------------------------------------------
all_rows: List[dict] = []
for model in selected_models:
model_clusters = get_model_clusters(model_stats, model) # type: ignore[arg-type]
if not model_clusters:
continue
# Optional filter by a single model after the fact
if selected_model and model != selected_model:
continue
for cluster_name, cdata in model_clusters.items():
# Filter out "No properties" clusters
if cluster_name == "No properties":
continue
# Basic numbers
freq_pct = cdata.get("proportion", 0.0) * 100.0
prop_ci = cdata.get("proportion_ci")
# Quality per metric dicts ------------------------------------------------
quality_dict = cdata.get("quality", {}) or {}
quality_ci_dict = cdata.get("quality_ci", {}) or {}
# Significance flags
sal_sig = bool(cdata.get("proportion_delta_significant", False))
quality_sig_flags = cdata.get("quality_delta_significant", {}) or {}
all_rows.append({
"cluster": cluster_name,
"model": model,
"frequency": freq_pct,
"proportion_ci": prop_ci,
"quality": quality_dict,
"quality_ci": quality_ci_dict,
"score_significant": sal_sig,
"quality_significant_any": any(quality_sig_flags.values()),
"quality_significant_metric": quality_sig_flags.get(selected_quality_metric) if selected_quality_metric else None,
})
if not all_rows:
return pd.DataFrame()
df_all = pd.DataFrame(all_rows)
# Aggregate frequency across models ----------------------------------
freq_sum = df_all.groupby("cluster")["frequency"].sum().sort_values(ascending=False)
top_clusters = freq_sum.head(top_n).index.tolist()
df_top = df_all[df_all["cluster"].isin(top_clusters)].copy()
table_rows: List[dict] = []
for clu in top_clusters:
subset = df_top[df_top["cluster"] == clu]
avg_freq = subset["frequency"].mean()
# Aggregate CI (mean of bounds)
ci_lowers = [ci.get("lower") for ci in subset["proportion_ci"] if isinstance(ci, dict)]
ci_uppers = [ci.get("upper") for ci in subset["proportion_ci"] if isinstance(ci, dict)]
freq_ci = {
"lower": float(np.mean(ci_lowers)) if ci_lowers else None,
"upper": float(np.mean(ci_uppers)) if ci_uppers else None,
} if ci_lowers and ci_uppers else None
# Quality aggregation -----------------------------------------------------
q_vals: List[float] = []
q_ci_l: List[float] = []
q_ci_u: List[float] = []
quality_sig_any = False
for _, row in subset.iterrows():
q_dict = row["quality"]
if selected_quality_metric:
if selected_quality_metric in q_dict:
q_vals.append(q_dict[selected_quality_metric])
ci_metric = row["quality_ci"].get(selected_quality_metric) if isinstance(row["quality_ci"], dict) else None
if ci_metric:
q_ci_l.append(ci_metric.get("lower"))
q_ci_u.append(ci_metric.get("upper"))
quality_sig_any = quality_sig_any or bool(row["quality_significant_metric"])
else:
q_vals.extend(q_dict.values())
for ci in row["quality_ci"].values():
if isinstance(ci, dict):
q_ci_l.append(ci.get("lower"))
q_ci_u.append(ci.get("upper"))
quality_sig_any = quality_sig_any or row["quality_significant_any"]
quality_val = float(np.mean(q_vals)) if q_vals else None
quality_ci = {
"lower": float(np.mean(q_ci_l)),
"upper": float(np.mean(q_ci_u)),
} if q_ci_l and q_ci_u else None
score_sig = subset["score_significant"].any()
table_rows.append({
"Cluster": clu,
"Frequency (%)": f"{avg_freq:.1f}",
"Freq CI": format_confidence_interval(freq_ci),
"Quality": f"{quality_val:.3f}" if quality_val is not None else "N/A",
"Quality CI": format_confidence_interval(quality_ci) if quality_ci else "N/A",
"Score Significance": "Yes" if score_sig else "No",
"Quality Significance": "Yes" if quality_sig_any else "No",
})
return pd.DataFrame(table_rows)
def create_frequency_comparison_plots(model_stats: Dict[str, Any],
selected_models: List[str],
cluster_level: str = 'fine',
top_n: int = 50,
show_confidence_intervals: bool = False) -> Tuple[go.Figure, go.Figure]:
"""Create frequency comparison plots (matching frequencies_tab.py exactly)."""
print(f"\nDEBUG: Plotting function called with:")
print(f" - Selected models: {selected_models}")
print(f" - Cluster level: {cluster_level}")
print(f" - Top N: {top_n}")
print(f" - Available models in stats: {list(model_stats.keys())}")
# Use the same data preparation logic as the table function
# Collect all clusters across all models for the chart (exact copy from frequencies_tab.py)
all_clusters_data = []
for model_name, model_data in model_stats.items():
if model_name not in selected_models:
continue
clusters = model_data.get(cluster_level, [])
for cluster in clusters:
# Filter out "No properties" clusters
if cluster.get('property_description') == "No properties":
continue
# Get confidence intervals for quality scores if available
quality_score_ci = cluster.get('quality_score_ci', {})
has_quality_ci = bool(quality_score_ci)
# Get distinctiveness score confidence intervals (correct structure)
score_ci = cluster.get('score_ci', {})
ci_lower = score_ci.get('lower') if score_ci else None
ci_upper = score_ci.get('upper') if score_ci else None
all_clusters_data.append({
'property_description': cluster['property_description'],
'model': model_name,
'frequency': cluster.get('proportion', 0) * 100, # Convert to percentage
'size': cluster.get('size', 0),
'cluster_size_global': cluster.get('cluster_size_global', 0),
'has_ci': has_confidence_intervals(cluster),
'ci_lower': ci_lower,
'ci_upper': ci_upper,
'has_quality_ci': has_quality_ci
})
if not all_clusters_data:
# Return empty figures
empty_fig = go.Figure()
empty_fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return empty_fig, empty_fig
clusters_df = pd.DataFrame(all_clusters_data)
# Get all unique clusters for the chart
all_unique_clusters = clusters_df['property_description'].unique()
total_clusters = len(all_unique_clusters)
# Show all clusters by default
top_n_for_chart = min(top_n, total_clusters)
# Calculate total frequency per cluster and get top clusters
cluster_totals = clusters_df.groupby('property_description')['frequency'].sum().sort_values(ascending=False)
top_clusters = cluster_totals.head(top_n_for_chart).index.tolist()
# Get quality scores for the same clusters to sort by quality
quality_data_for_sorting = []
for model_name, model_data in model_stats.items():
if model_name not in selected_models:
continue
clusters = model_data.get(cluster_level, [])
for cluster in clusters:
# Filter out "No properties" clusters
if cluster.get('property_description') == "No properties":
continue
if cluster['property_description'] in top_clusters:
quality_data_for_sorting.append({
'property_description': cluster['property_description'],
'quality_score': extract_quality_score(cluster.get('quality_score', 0))
})
# Calculate average quality score per cluster and sort
if quality_data_for_sorting:
quality_df_for_sorting = pd.DataFrame(quality_data_for_sorting)
avg_quality_per_cluster = quality_df_for_sorting.groupby('property_description')['quality_score'].mean().sort_values(ascending=True) # Low to high
top_clusters = avg_quality_per_cluster.index.tolist()
# Reverse the order so low quality appears at top of chart
top_clusters = top_clusters[::-1]
# Filter data to only include top clusters
chart_data = clusters_df[clusters_df['property_description'].isin(top_clusters)]
if chart_data.empty:
# Return empty figures
empty_fig = go.Figure()
empty_fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return empty_fig, empty_fig
# Get unique models for colors
models = chart_data['model'].unique()
# Use a color palette that avoids yellow - using Set1 which has better contrast
colors = px.colors.qualitative.Set1[:len(models)]
# Create horizontal bar chart for frequencies
fig = go.Figure()
# Add a bar for each model
for i, model in enumerate(models):
model_data = chart_data[chart_data['model'] == model]
# Sort by cluster order (same as top_clusters)
model_data = model_data.set_index('property_description').reindex(top_clusters).reset_index()
# Fill NaN values with 0 for missing clusters
model_data['frequency'] = model_data['frequency'].fillna(0)
model_data['has_ci'] = model_data['has_ci'].fillna(False)
# For CI columns, replace NaN with None using where() instead of fillna(None)
model_data['ci_lower'] = model_data['ci_lower'].where(pd.notna(model_data['ci_lower']), None)
model_data['ci_upper'] = model_data['ci_upper'].where(pd.notna(model_data['ci_upper']), None)
# Ensure frequency is numeric and non-negative
model_data['frequency'] = pd.to_numeric(model_data['frequency'], errors='coerce').fillna(0)
model_data['frequency'] = model_data['frequency'].clip(lower=0)
# Debug: print model data for first model
if i == 0: # Only print for first model to avoid spam
print(f"DEBUG: Model {model} data sample:")
print(f" - Clusters: {len(model_data)}")
print(f" - Frequency range: {model_data['frequency'].min():.2f} - {model_data['frequency'].max():.2f}")
print(f" - Non-zero frequencies: {(model_data['frequency'] > 0).sum()}")
if len(model_data) > 0:
print(f" - Sample row: {model_data.iloc[0][['property_description', 'frequency']].to_dict()}")
# Remove any rows where property_description is NaN (these are clusters this model doesn't appear in)
model_data = model_data.dropna(subset=['property_description'])
# Get confidence intervals for error bars
ci_lower = []
ci_upper = []
for _, row in model_data.iterrows():
freq_value = row.get('frequency', 0)
if (row.get('has_ci', False) and
pd.notna(row.get('ci_lower')) and
pd.notna(row.get('ci_upper')) and
freq_value > 0): # Only calculate CIs for non-zero frequencies
# IMPORTANT: These are distinctiveness score CIs, not frequency CIs
# The distinctiveness score measures how much more/less frequently
# a model exhibits this behavior compared to the median model
# We can use this to estimate uncertainty in the frequency measurement
distinctiveness_ci_width = row['ci_upper'] - row['ci_lower']
# Convert to frequency uncertainty (approximate)
# A wider distinctiveness CI suggests more uncertainty in the frequency
freq_uncertainty = distinctiveness_ci_width * freq_value * 0.1
ci_lower.append(max(0, freq_value - freq_uncertainty))
ci_upper.append(freq_value + freq_uncertainty)
else:
ci_lower.append(None)
ci_upper.append(None)
# Debug: Check the data going into the plot
print(f"DEBUG: Adding trace for model {model}:")
print(f" - Y values (clusters): {model_data['property_description'].tolist()[:3]}...") # First 3 clusters
print(f" - X values (frequencies): {model_data['frequency'].tolist()[:3]}...") # First 3 frequencies
print(f" - Total data points: {len(model_data)}")
fig.add_trace(go.Bar(
y=model_data['property_description'],
x=model_data['frequency'],
name=model,
orientation='h',
marker_color=colors[i],
error_x=dict(
type='data',
array=[u - l if u is not None and l is not None else None for l, u in zip(ci_lower, ci_upper)],
arrayminus=[f - l if f is not None and l is not None else None for f, l in zip(model_data['frequency'], ci_lower)],
visible=show_confidence_intervals,
thickness=1,
width=3,
color='rgba(0,0,0,0.3)'
),
hovertemplate='<b>%{y}</b><br>' +
f'Model: {model}<br>' +
'Frequency: %{x:.1f}%<br>' +
'CI: %{customdata[0]}<extra></extra>',
customdata=[[
format_confidence_interval({
'lower': l,
'upper': u
}) if l is not None and u is not None else "N/A"
for l, u in zip(ci_lower, ci_upper)
]]
))
# Update layout
fig.update_layout(
title=f"Model Frequencies in Top {len(top_clusters)} Clusters",
xaxis_title="Frequency (%)",
yaxis_title="Cluster Description",
barmode='group', # Group bars side by side
height=max(600, len(top_clusters) * 25), # Adjust height based on number of clusters
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
)
)
# Update y-axis to show truncated cluster names
fig.update_yaxes(
tickmode='array',
ticktext=[truncate_cluster_name(desc, 60) for desc in top_clusters],
tickvals=top_clusters
)
# Create quality score chart
# Get quality scores for the same clusters (single score per cluster)
quality_data = []
quality_cis = [] # Add confidence intervals for quality scores
for cluster_desc in top_clusters:
# Get the first available quality score for this cluster
for model_name, model_data in model_stats.items():
clusters = model_data.get(cluster_level, [])
for cluster in clusters:
if cluster['property_description'] == cluster_desc:
quality_score = extract_quality_score(cluster.get('quality_score', 0))
quality_data.append({
'property_description': cluster_desc,
'quality_score': quality_score
})
# Get quality score confidence intervals
quality_ci = cluster.get('quality_score_ci', {})
if isinstance(quality_ci, dict) and quality_ci:
# Get the first available quality CI
for score_key, ci_data in quality_ci.items():
if isinstance(ci_data, dict):
ci_lower = ci_data.get('lower')
ci_upper = ci_data.get('upper')
if ci_lower is not None and ci_upper is not None:
quality_cis.append({
'property_description': cluster_desc,
'ci_lower': ci_lower,
'ci_upper': ci_upper
})
break
else:
quality_cis.append({
'property_description': cluster_desc,
'ci_lower': None,
'ci_upper': None
})
else:
quality_cis.append({
'property_description': cluster_desc,
'ci_lower': None,
'ci_upper': None
})
break
if any(q['property_description'] == cluster_desc for q in quality_data):
break
if quality_data:
quality_df = pd.DataFrame(quality_data)
quality_cis_df = pd.DataFrame(quality_cis) if quality_cis else None
# Create quality score chart with single bars
fig_quality = go.Figure()
# Prepare confidence intervals for error bars
ci_lower = []
ci_upper = []
for _, row in quality_df.iterrows():
cluster_desc = row['property_description']
if quality_cis_df is not None:
ci_row = quality_cis_df[quality_cis_df['property_description'] == cluster_desc]
if not ci_row.empty:
ci_lower.append(ci_row.iloc[0]['ci_lower'])
ci_upper.append(ci_row.iloc[0]['ci_upper'])
else:
ci_lower.append(None)
ci_upper.append(None)
else:
ci_lower.append(None)
ci_upper.append(None)
# Add a single bar for each cluster
fig_quality.add_trace(go.Bar(
y=[truncate_cluster_name(desc, 60) for desc in quality_df['property_description']],
x=quality_df['quality_score'],
orientation='h',
marker_color='lightblue', # Single color for all bars
name='Quality Score',
showlegend=False,
error_x=dict(
type='data',
array=[u - l if u is not None and l is not None else None for l, u in zip(ci_lower, ci_upper)],
arrayminus=[q - l if q is not None and l is not None else None for q, l in zip(quality_df['quality_score'], ci_lower)],
visible=show_confidence_intervals,
thickness=1,
width=3,
color='rgba(0,0,0,0.3)'
),
hovertemplate='<b>%{y}</b><br>' +
'Quality Score: %{x:.3f}<br>' +
'CI: %{customdata[0]}<extra></extra>',
customdata=[[
format_confidence_interval({
'lower': l,
'upper': u
}) if l is not None and u is not None else "N/A"
for l, u in zip(ci_lower, ci_upper)
]]
))
# Update layout
fig_quality.update_layout(
title=f"Quality Scores",
xaxis_title="Quality Score",
yaxis_title="", # No y-axis title to save space
height=max(600, len(top_clusters) * 25), # Same height as main chart
showlegend=False,
yaxis=dict(showticklabels=False) # Hide y-axis labels to save space
)
else:
# Create empty quality figure
fig_quality = go.Figure()
fig_quality.add_annotation(text="No quality score data available",
xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig, fig_quality
def search_clusters_by_text(clustered_df: pd.DataFrame,
search_term: str,
search_in: str = 'description') -> pd.DataFrame:
"""Search clusters by text in descriptions or other fields."""
if not search_term:
return clustered_df.head(100) # Return first 100 if no search
search_term = search_term.lower()
if search_in == 'description':
mask = clustered_df['property_description'].str.lower().str.contains(search_term, na=False)
elif search_in == 'model':
mask = clustered_df['model'].str.lower().str.contains(search_term, na=False)
elif search_in == 'cluster_label':
# Use correct column names from pipeline
fine_label_col = 'property_description_fine_cluster_label'
coarse_label_col = 'property_description_coarse_cluster_label'
mask = pd.Series([False] * len(clustered_df))
if fine_label_col in clustered_df.columns:
mask |= clustered_df[fine_label_col].str.lower().str.contains(search_term, na=False)
if coarse_label_col in clustered_df.columns:
mask |= clustered_df[coarse_label_col].str.lower().str.contains(search_term, na=False)
else:
# Search in all text columns using correct column names
text_cols = ['property_description', 'model',
'property_description_fine_cluster_label',
'property_description_coarse_cluster_label']
mask = pd.Series([False] * len(clustered_df))
for col in text_cols:
if col in clustered_df.columns:
mask |= clustered_df[col].str.lower().str.contains(search_term, na=False)
return clustered_df[mask].head(100)
def search_clusters_only(clustered_df: pd.DataFrame,
search_term: str,
cluster_level: str = 'fine') -> pd.DataFrame:
"""Search only over cluster labels, not individual property descriptions."""
if not search_term:
return clustered_df
search_term = search_term.lower()
# Use the correct column names based on cluster level
if cluster_level == 'fine':
label_col = 'property_description_fine_cluster_label'
alt_label_col = 'fine_cluster_label'
else:
label_col = 'property_description_coarse_cluster_label'
alt_label_col = 'coarse_cluster_label'
# Try both naming patterns
if label_col in clustered_df.columns:
mask = clustered_df[label_col].str.lower().str.contains(search_term, na=False)
elif alt_label_col in clustered_df.columns:
mask = clustered_df[alt_label_col].str.lower().str.contains(search_term, na=False)
else:
# If neither column exists, return empty DataFrame
return pd.DataFrame()
return clustered_df[mask]
def create_interactive_cluster_viewer(clustered_df: pd.DataFrame,
selected_models: Optional[List[str]] = None,
cluster_level: str = 'fine') -> str:
"""Create interactive cluster viewer HTML similar to Streamlit version."""
if clustered_df.empty:
return "<p>No cluster data available</p>"
df = clustered_df.copy()
# Debug information
print(f"DEBUG: create_interactive_cluster_viewer called")
print(f" - Input DataFrame shape: {df.shape}")
print(f" - Selected models: {selected_models}")
print(f" - Available models in data: {df['model'].unique().tolist() if 'model' in df.columns else 'No model column'}")
# Filter by models if specified
if selected_models:
print(f" - Filtering by {len(selected_models)} selected models")
df = df[df['model'].isin(selected_models)]
print(f" - After filtering shape: {df.shape}")
print(f" - Models after filtering: {df['model'].unique().tolist()}")
else:
print(f" - No model filtering applied")
if df.empty:
return f"<p>No data found for selected models: {', '.join(selected_models or [])}</p>"
# Get cluster scores data for quality and frequency information
from .state import app_state
cluster_scores = app_state.get("metrics", {}).get("cluster_scores", {})
# Use the actual column names from the pipeline output (matching Streamlit version)
if cluster_level == 'fine':
id_col = 'property_description_fine_cluster_id'
label_col = 'property_description_fine_cluster_label'
# Also check for alternative naming without prefix
alt_id_col = 'fine_cluster_id'
alt_label_col = 'fine_cluster_label'
else:
id_col = 'property_description_coarse_cluster_id'
label_col = 'property_description_coarse_cluster_label'
# Also check for alternative naming without prefix
alt_id_col = 'coarse_cluster_id'
alt_label_col = 'coarse_cluster_label'
# Track if we fall back from coarse to fine
fell_back_to_fine = False
# Check if required columns exist and provide helpful debug info
# Try both naming patterns
if id_col in df.columns and label_col in df.columns:
# Use the expected naming pattern
pass
elif alt_id_col in df.columns and alt_label_col in df.columns:
# Use the alternative naming pattern
id_col = alt_id_col
label_col = alt_label_col
else:
# If coarse clusters are not available, try to fall back to fine clusters
if cluster_level == 'coarse':
# Check if fine clusters are available
fine_id_col = 'property_description_fine_cluster_id'
fine_label_col = 'property_description_fine_cluster_label'
fine_alt_id_col = 'fine_cluster_id'
fine_alt_label_col = 'fine_cluster_label'
if (fine_id_col in df.columns and fine_label_col in df.columns) or (fine_alt_id_col in df.columns and fine_alt_label_col in df.columns):
# Fall back to fine clusters
if fine_id_col in df.columns and fine_label_col in df.columns:
id_col = fine_id_col
label_col = fine_label_col
else:
id_col = fine_alt_id_col
label_col = fine_alt_label_col
cluster_level = 'fine' # Update the cluster level for display
fell_back_to_fine = True
else:
# No cluster columns available at all
available_cols = list(df.columns)
return f"""
<div style="padding: 20px; background: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px;">
<h4>β Missing cluster columns in data</h4>
<p><strong>Expected:</strong> {id_col}, {label_col} OR {alt_id_col}, {alt_label_col}</p>
<p><strong>Available columns:</strong> {', '.join(available_cols)}</p>
<p>Please ensure your data contains clustering results from the LMM-Vibes pipeline.</p>
</div>
"""
else:
# For fine clusters, show the original error
available_cols = list(df.columns)
return f"""
<div style="padding: 20px; background: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px;">
<h4>β Missing {cluster_level} cluster columns in data</h4>
<p><strong>Expected:</strong> {id_col}, {label_col} OR {alt_id_col}, {alt_label_col}</p>
<p><strong>Available columns:</strong> {', '.join(available_cols)}</p>
<p>Please ensure your data contains clustering results from the LMM-Vibes pipeline.</p>
</div>
"""
# Group by cluster to get cluster information
try:
print(f" - Grouping by cluster columns: {id_col}, {label_col}")
cluster_groups = df.groupby([id_col, label_col]).agg({
'property_description': ['count', lambda x: x.unique().tolist()],
'model': lambda x: x.unique().tolist()
}).reset_index()
# Flatten column names
cluster_groups.columns = [
id_col, label_col, 'size', 'property_descriptions', 'models'
]
# Sort by size (largest first)
cluster_groups = cluster_groups.sort_values('size', ascending=False)
# Filter out "No properties" clusters
cluster_groups = cluster_groups[cluster_groups[label_col] != "No properties"]
print(f" - Found {len(cluster_groups)} clusters")
print(f" - Cluster sizes: {cluster_groups['size'].tolist()}")
print(f" - Models per cluster: {[len(models) for models in cluster_groups['models']]}")
except Exception as e:
return f"""
<div style="padding: 20px; background: #f8d7da; border: 1px solid #f5c6cb; border-radius: 8px;">
<h4>β Error processing cluster data</h4>
<p><strong>Error:</strong> {str(e)}</p>
<p>Please check your data format and try again.</p>
</div>
"""
if len(cluster_groups) == 0:
return """
<div style="padding: 20px; background: #d1ecf1; border: 1px solid #bee5eb; border-radius: 8px;">
<h4>βΉοΈ No clusters found</h4>
<p>No clusters match your current filters. Try selecting different models or adjusting your search.</p>
</div>
"""
# Create HTML
html = f"""
<div style="max-width: 1600px; margin: 0 auto;">
<h3>π Interactive Cluster Viewer ({cluster_level.title()} Level)</h3>
<p style="color: #666; margin-bottom: 20px;">
Click on clusters below to explore their property descriptions.
Showing {len(cluster_groups)} clusters sorted by size.
</p>
"""
# Add a note if we fell back from coarse to fine clusters
if cluster_level == 'fine' and fell_back_to_fine:
html += """
<div style="padding: 15px; background: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; margin-bottom: 20px;">
<strong>Note:</strong> Coarse clusters not available in this dataset. Showing fine clusters instead.
</div>
"""
for i, row in cluster_groups.iterrows():
cluster_id = row[id_col]
cluster_label = row[label_col]
cluster_size = row['size']
property_descriptions = row['property_descriptions']
models_in_cluster = row['models']
# Get quality and frequency information from cluster_scores
cluster_metrics = cluster_scores.get(cluster_label, {})
frequency_pct = cluster_metrics.get("proportion", 0) * 100 if cluster_metrics else 0
quality_scores = cluster_metrics.get("quality", {})
quality_delta = cluster_metrics.get("quality_delta", {})
# Build per-metric header display: "metric: score (delta)"
header_quality_display = "N/A"
if quality_scores or quality_delta:
metric_names = sorted(set(quality_scores.keys()) | set(quality_delta.keys()))
parts: list[str] = []
for metric_name in metric_names:
score_val = quality_scores.get(metric_name)
delta_val = quality_delta.get(metric_name)
score_str = f"{score_val:.3f}" if isinstance(score_val, (int, float)) else "N/A"
if isinstance(delta_val, (int, float)):
color = "#28a745" if delta_val >= 0 else "#dc3545"
parts.append(f"{metric_name}: {score_str} <span style=\"color: {color};\">({delta_val:+.3f})</span>")
else:
parts.append(f"{metric_name}: {score_str}")
header_quality_display = "\n".join(parts)
# Format quality scores for detailed view
quality_html = ""
if quality_scores:
quality_parts = []
for metric_name, score in quality_scores.items():
color = "#28a745" if score >= 0 else "#dc3545"
quality_parts.append(f'<span style="color:{color}; font-weight:500;">{metric_name}: {score:.3f}</span>')
quality_html = " | ".join(quality_parts)
else:
quality_html = '<span style="color:#666;">No quality data</span>'
# Format quality delta (relative to average)
quality_delta_html = ""
if quality_delta:
delta_parts = []
for metric_name, delta in quality_delta.items():
color = "#28a745" if delta >= 0 else "#dc3545"
sign = "+" if delta >= 0 else ""
delta_parts.append(f'<span style="color:{color}; font-weight:500;">{metric_name}: {sign}{delta:.3f}</span>')
quality_delta_html = " | ".join(delta_parts)
else:
quality_delta_html = '<span style="color:#666;">No delta data</span>'
# Format header quality score with visual indicators
header_quality_text = header_quality_display
# Get light color for this cluster (matching overview style)
cluster_color = get_light_color_for_cluster(cluster_label, i)
# Create expandable cluster card with overview-style design
html += f"""
<details style="margin: 15px 0; border: 1px solid #e0e0e0; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<summary style="
padding: 15px;
background: {cluster_color};
color: #333;
cursor: pointer;
font-weight: 600;
font-size: 16px;
user-select: none;
list-style: none;
display: flex;
justify-content: space-between;
align-items: center;
border-bottom: 1px solid #dee2e6;
">
<div style="max-width: 80%;">
<div style="margin-bottom: 4px;">
<strong style="font-size: 14px;">{cluster_label}</strong>
</div>
<span style="font-size: 12px; color: #555;">
{frequency_pct:.1f}% frequency ({cluster_size} properties) Β· {len(models_in_cluster)} models
</span>
</div>
<div style="font-size: 12px; font-weight: normal; white-space: nowrap; text-align: right;">
<div style="margin-bottom: 4px;">
<span style="font-weight: 500;">{header_quality_text}</span>
</div>
<div style="color: #6c757d;">
{frequency_pct:.1f}% frequency
</div>
</div>
</summary>
<div style="padding: 20px; background: #f8f9fa;">
<div style="margin-bottom: 15px;">
<strong>Cluster ID:</strong> {cluster_id}<br>
<strong>Size:</strong> {cluster_size} properties<br>
<strong>Models:</strong> {', '.join(models_in_cluster)}<br>
<strong>Frequency:</strong> {frequency_pct:.1f}% of all conversations<br>
<strong>Quality Scores:</strong> {quality_html}<br>
<strong>Quality vs Average:</strong> {quality_delta_html}
</div>
<h4 style="color: #333; margin: 15px 0 10px 0;">
Property Descriptions ({len(property_descriptions)})
</h4>
<div style="max-height: 300px; overflow-y: auto; background: white; border: 1px solid #ddd; border-radius: 4px; padding: 10px;">
"""
# Display property descriptions
for i, desc in enumerate(property_descriptions, 1):
html += f"""
<div style="
padding: 8px;
margin: 4px 0;
background: #f8f9fa;
border-left: 3px solid #667eea;
border-radius: 2px;
">
<strong>{i}.</strong> {desc}
</div>
"""
html += """
</div>
</div>
</details>
"""
html += "</div>"
return html
def get_cluster_statistics(clustered_df: pd.DataFrame,
selected_models: Optional[List[str]] = None) -> Dict[str, Any]:
"""Get cluster statistics for display."""
if clustered_df.empty:
return {}
df = clustered_df.copy()
# Filter by models if specified
if selected_models:
df = df[df['model'].isin(selected_models)]
stats = {
'total_properties': len(df),
'total_models': df['model'].nunique() if 'model' in df.columns else 0,
}
# Fine cluster statistics - try both naming patterns
fine_id_col = 'property_description_fine_cluster_id'
alt_fine_id_col = 'fine_cluster_id'
if fine_id_col in df.columns:
stats['fine_clusters'] = df[fine_id_col].nunique()
cluster_sizes = df.groupby(fine_id_col).size()
stats['min_properties_per_fine_cluster'] = cluster_sizes.min() if not cluster_sizes.empty else 0
stats['max_properties_per_fine_cluster'] = cluster_sizes.max() if not cluster_sizes.empty else 0
stats['avg_properties_per_fine_cluster'] = cluster_sizes.mean() if not cluster_sizes.empty else 0
elif alt_fine_id_col in df.columns:
stats['fine_clusters'] = df[alt_fine_id_col].nunique()
cluster_sizes = df.groupby(alt_fine_id_col).size()
stats['min_properties_per_fine_cluster'] = cluster_sizes.min() if not cluster_sizes.empty else 0
stats['max_properties_per_fine_cluster'] = cluster_sizes.max() if not cluster_sizes.empty else 0
stats['avg_properties_per_fine_cluster'] = cluster_sizes.mean() if not cluster_sizes.empty else 0
# Coarse cluster statistics - try both naming patterns
coarse_id_col = 'property_description_coarse_cluster_id'
alt_coarse_id_col = 'coarse_cluster_id'
if coarse_id_col in df.columns:
stats['coarse_clusters'] = df[coarse_id_col].nunique()
cluster_sizes = df.groupby(coarse_id_col).size()
stats['min_properties_per_coarse_cluster'] = cluster_sizes.min() if not cluster_sizes.empty else 0
stats['max_properties_per_coarse_cluster'] = cluster_sizes.max() if not cluster_sizes.empty else 0
stats['avg_properties_per_coarse_cluster'] = cluster_sizes.mean() if not cluster_sizes.empty else 0
elif alt_coarse_id_col in df.columns:
stats['coarse_clusters'] = df[alt_coarse_id_col].nunique()
cluster_sizes = df.groupby(alt_coarse_id_col).size()
stats['min_properties_per_coarse_cluster'] = cluster_sizes.min() if not cluster_sizes.empty else 0
stats['max_properties_per_coarse_cluster'] = cluster_sizes.max() if not cluster_sizes.empty else 0
stats['avg_properties_per_coarse_cluster'] = cluster_sizes.mean() if not cluster_sizes.empty else 0
return stats
def get_unique_values_for_dropdowns(clustered_df: pd.DataFrame) -> Dict[str, List[str]]:
"""Get unique values for dropdown menus."""
if clustered_df.empty:
return {'prompts': [], 'models': [], 'properties': []}
# Get unique values, handling missing columns gracefully
prompts = []
if 'prompt' in clustered_df.columns:
unique_prompts = clustered_df['prompt'].dropna().unique().tolist()
prompts = [prompt[:100] + "..." if len(prompt) > 100 else prompt for prompt in sorted(unique_prompts)]
elif 'question' in clustered_df.columns:
unique_prompts = clustered_df['question'].dropna().unique().tolist()
prompts = [prompt[:100] + "..." if len(prompt) > 100 else prompt for prompt in sorted(unique_prompts)]
elif 'input' in clustered_df.columns:
unique_prompts = clustered_df['input'].dropna().unique().tolist()
prompts = [prompt[:100] + "..." if len(prompt) > 100 else prompt for prompt in sorted(unique_prompts)]
elif 'user_prompt' in clustered_df.columns:
unique_prompts = clustered_df['user_prompt'].dropna().unique().tolist()
prompts = [prompt[:100] + "..." if len(prompt) > 100 else prompt for prompt in sorted(unique_prompts)]
# Handle both single model and side-by-side datasets
models = []
if 'model' in clustered_df.columns:
# Single model datasets
models = sorted(clustered_df['model'].dropna().unique().tolist())
elif 'model_a' in clustered_df.columns and 'model_b' in clustered_df.columns:
# Side-by-side datasets - combine models from both columns
models_a = clustered_df['model_a'].dropna().unique().tolist()
models_b = clustered_df['model_b'].dropna().unique().tolist()
all_models = set(models_a + models_b)
models = sorted(list(all_models))
# Use fine cluster labels instead of property descriptions - try both naming patterns
properties = []
fine_label_col = 'property_description_fine_cluster_label'
alt_fine_label_col = 'fine_cluster_label'
if fine_label_col in clustered_df.columns:
unique_properties = clustered_df[fine_label_col].dropna().unique().tolist()
# Filter out "No properties" clusters
unique_properties = [prop for prop in unique_properties if prop != "No properties"]
properties = [prop[:100] + "..." if len(prop) > 100 else prop for prop in sorted(unique_properties)]
elif alt_fine_label_col in clustered_df.columns:
unique_properties = clustered_df[alt_fine_label_col].dropna().unique().tolist()
# Filter out "No properties" clusters
unique_properties = [prop for prop in unique_properties if prop != "No properties"]
properties = [prop[:100] + "..." if len(prop) > 100 else prop for prop in sorted(unique_properties)]
elif 'property_description' in clustered_df.columns:
# Fallback to property descriptions if cluster labels not available
unique_properties = clustered_df['property_description'].dropna().unique().tolist()
# Filter out "No properties" clusters
unique_properties = [prop for prop in unique_properties if prop != "No properties"]
properties = [prop[:100] + "..." if len(prop) > 100 else prop for prop in sorted(unique_properties)]
return {
'prompts': prompts,
'models': models,
'properties': properties
}
# ---------------------------------------------------------------------------
# Example data extraction (restored)
# ---------------------------------------------------------------------------
def get_example_data(
clustered_df: pd.DataFrame,
selected_prompt: str | None = None,
selected_model: str | None = None,
selected_property: str | None = None,
max_examples: int = 5,
show_unexpected_behavior: bool = False,
randomize: bool = False,
) -> List[Dict[str, Any]]:
"""Return a list of example rows filtered by prompt / model / property.
This function was accidentally removed during a refactor; it is required by
*examples_tab.py* and other parts of the UI.
Args:
clustered_df: DataFrame containing the clustered results data
selected_prompt: Prompt to filter by (None for all)
selected_model: Model to filter by (None for all)
selected_property: Property description to filter by (None for all)
max_examples: Maximum number of examples to return
show_unexpected_behavior: If True, filter to only show unexpected behavior
randomize: If True, sample randomly from the filtered set instead of taking the first rows
Returns:
List of example dictionaries with extracted data
"""
if clustered_df.empty:
return []
df = clustered_df.copy()
# Filter by unexpected behavior if requested
if show_unexpected_behavior:
if "unexpected_behavior" in df.columns:
# Assuming True/1 means unexpected behavior
df = df[df["unexpected_behavior"].isin([True, 1, "True", "true"])]
else:
# If no unexpected_behavior column, return empty (or could return all)
return []
# Filter by prompt
if selected_prompt:
prompt_cols = ["prompt", "question", "input", "user_prompt"]
for col in prompt_cols:
if col in df.columns:
df = df[df[col].str.contains(selected_prompt, case=False, na=False)]
break
# Filter by model - handle both single model and side-by-side datasets
if selected_model:
if "model" in df.columns:
# Single model datasets
df = df[df["model"] == selected_model]
elif "model_a" in df.columns and "model_b" in df.columns:
# Side-by-side datasets - filter where either model_a or model_b matches
df = df[(df["model_a"] == selected_model) | (df["model_b"] == selected_model)]
# Filter by property
if selected_property:
property_cols = ["property_description", "cluster", "fine_cluster_label", "property_description_fine_cluster_label"]
for col in property_cols:
if col in df.columns:
df = df[df[col].str.contains(selected_property, case=False, na=False)]
break
# Limit to max_examples (randomized if requested)
if randomize:
if len(df) > max_examples:
df = df.sample(n=max_examples)
else:
df = df.sample(frac=1)
else:
df = df.head(max_examples)
examples: List[Dict[str, Any]] = []
for _, row in df.iterrows():
prompt_val = next(
(row.get(col) for col in ["prompt", "question", "input", "user_prompt"] if row.get(col) is not None),
"N/A",
)
# Check if this is a side-by-side dataset
is_side_by_side = ('model_a_response' in row and 'model_b_response' in row and
row.get('model_a_response') is not None and row.get('model_b_response') is not None)
if is_side_by_side:
# For side-by-side datasets, store both responses separately
response_val = "SIDE_BY_SIDE" # Special marker
model_val = f"{row.get('model_a', 'Model A')} vs {row.get('model_b', 'Model B')}"
else:
# For single response datasets, use the existing logic
response_val = next(
(
row.get(col)
for col in [
"model_response",
"model_a_response",
"model_b_response",
"responses",
"response",
"output",
]
if row.get(col) is not None
),
"N/A",
)
model_val = row.get("model", "N/A")
# Try both naming patterns for cluster data
fine_cluster_id = row.get("property_description_fine_cluster_id", row.get("fine_cluster_id", "N/A"))
fine_cluster_label = row.get("property_description_fine_cluster_label", row.get("fine_cluster_label", "N/A"))
coarse_cluster_id = row.get("property_description_coarse_cluster_id", row.get("coarse_cluster_id", "N/A"))
coarse_cluster_label = row.get("property_description_coarse_cluster_label", row.get("coarse_cluster_label", "N/A"))
example_dict = {
"id": row.get("id", "N/A"),
"model": model_val,
"prompt": prompt_val,
"response": response_val,
"property_description": row.get("property_description", "N/A"),
"score": row.get("score", "N/A"),
"fine_cluster_id": fine_cluster_id,
"fine_cluster_label": fine_cluster_label,
"coarse_cluster_id": coarse_cluster_id,
"coarse_cluster_label": coarse_cluster_label,
"category": row.get("category", "N/A"),
"type": row.get("type", "N/A"),
"impact": row.get("impact", "N/A"),
"reason": row.get("reason", "N/A"),
"evidence": row.get("evidence", "N/A"),
"user_preference_direction": row.get("user_preference_direction", "N/A"),
"raw_response": row.get("raw_response", "N/A"),
"contains_errors": row.get("contains_errors", "N/A"),
"unexpected_behavior": row.get("unexpected_behavior", "N/A"),
}
# Add side-by-side specific fields if applicable
if is_side_by_side:
example_dict.update({
"is_side_by_side": True,
"model_a": row.get("model_a", "Model A"),
"model_b": row.get("model_b", "Model B"),
"model_a_response": row.get("model_a_response", "N/A"),
"model_b_response": row.get("model_b_response", "N/A"),
"winner": row.get("winner", None),
})
else:
example_dict["is_side_by_side"] = False
examples.append(example_dict)
return examples
def format_examples_display(examples: List[Dict[str, Any]],
selected_prompt: str = None,
selected_model: str = None,
selected_property: str = None,
use_accordion: bool = True,
pretty_print_dicts: bool = True) -> str:
"""Format examples for HTML display with proper conversation rendering.
Args:
examples: List of example dictionaries
selected_prompt: Currently selected prompt filter
selected_model: Currently selected model filter
selected_property: Currently selected property filter
use_accordion: If True, group system and info messages in collapsible accordions
pretty_print_dicts: If True, pretty-print embedded dictionaries
Returns:
HTML string for display
"""
from .conversation_display import convert_to_openai_format, display_openai_conversation_html
from .side_by_side_display import display_side_by_side_responses
if not examples:
return "<p style='color: #e74c3c; padding: 20px;'>No examples found matching the current filters.</p>"
# Create filter summary
filter_parts = []
if selected_prompt and selected_prompt != "All Prompts":
filter_parts.append(f"Prompt: {selected_prompt}")
if selected_model and selected_model != "All Models":
filter_parts.append(f"Model: {selected_model}")
if selected_property and selected_property != "All Clusters":
filter_parts.append(f"Cluster: {selected_property}")
filter_summary = ""
if filter_parts:
filter_summary = f"""
<div style="background: #e3f2fd; padding: 15px; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #2196f3;">
<strong>π Active Filters:</strong> {" β’ ".join(filter_parts)}
</div>
"""
html = f"""
<div style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;">
<h3 style="color: #333; margin-bottom: 15px;">π Examples ({len(examples)} found)</h3>
{filter_summary}
"""
for i, example in enumerate(examples, 1):
# Check if this is a side-by-side example
if example.get('is_side_by_side', False):
# Use side-by-side display for comparison datasets
conversation_html = display_side_by_side_responses(
model_a=example['model_a'],
model_b=example['model_b'],
model_a_response=example['model_a_response'],
model_b_response=example['model_b_response'],
use_accordion=use_accordion,
pretty_print_dicts=pretty_print_dicts,
score=example['score'],
winner=example.get('winner')
)
else:
# Convert response to OpenAI format for proper display (single model)
response_data = example['response']
if response_data != 'N/A':
openai_conversation = convert_to_openai_format(response_data)
conversation_html = display_openai_conversation_html(
openai_conversation,
use_accordion=use_accordion,
pretty_print_dicts=pretty_print_dicts,
evidence=example.get('evidence')
)
else:
conversation_html = "<p style='color: #dc3545; font-style: italic;'>No response data available</p>"
# Determine cluster info
cluster_info = ""
if example['fine_cluster_label'] != 'N/A':
cluster_info = f"""
<div style="margin-top: 10px; font-size: 13px; color: #666;">
<strong>π·οΈ Cluster:</strong> {example['fine_cluster_label']} (ID: {example['fine_cluster_id']})
</div>
"""
# Score display for summary (only for non-side-by-side or when not shown in side-by-side)
score_badge = ""
if not example.get('is_side_by_side', False) and example['score'] != 'N/A':
try:
score_val = float(example['score'])
score_color = '#28a745' if score_val >= 0 else '#dc3545'
score_badge = f"""
<span style="
background: {score_color};
color: white;
padding: 4px 8px;
border-radius: 12px;
font-size: 12px;
font-weight: bold;
margin-left: 10px;
">
Score: {score_val:.3f}
</span>
"""
except:
pass
# Create short preview of prompt for summary
prompt_preview = example['prompt'][:80] + "..." if len(example['prompt']) > 80 else example['prompt']
# Create expandable example card
# First example is expanded by default
open_attr = "open" if i == 1 else ""
html += f"""
<details {open_attr} style="border: 1px solid #dee2e6; border-radius: 8px; margin-bottom: 15px; background: white; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
<summary style="
padding: 15px;
cursor: pointer;
font-weight: 600;
color: #495057;
background: linear-gradient(90deg, #f8f9fa 0%, #e9ecef 100%);
border-radius: 8px 8px 0 0;
border-bottom: 1px solid #dee2e6;
display: flex;
align-items: center;
justify-content: space-between;
">
<span>
<span style="background: #6c757d; color: white; padding: 4px 8px; border-radius: 4px; font-size: 12px; margin-right: 10px;">#{i}</span>
{prompt_preview}
</span>
<span style="font-size: 12px; color: #6c757d;">
{example['model']}{score_badge}
</span>
</summary>
<div style="padding: 20px;">
<div style="margin-bottom: 15px; padding: 15px; background: #f8f9fa; border-radius: 6px; border-left: 4px solid #17a2b8;">
<div style="display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px; font-size: 13px; color: #666;">
<div><strong>Model:</strong> {example['model']}</div>
<div><strong>ID:</strong> {example['id']}</div>
{f'<div><strong>Category:</strong> {example["category"]}</div>' if example["category"] not in ["N/A", "None"] else ""}
{f'<div><strong>Type:</strong> {example["type"]}</div>' if example["type"] not in ["N/A", "None"] else ""}
{f'<div><strong>Impact:</strong> {example["impact"]}</div>' if example["impact"] not in ["N/A", "None"] else ""}
</div>
<div style="margin-top: 10px;">
{f'<div style="margin-top: 10px;"><strong>Property:</strong> {example["property_description"]}</div>' if example["property_description"] not in ["N/A", "None"] else ""}
{f'<div style="margin-top: 10px;"><strong>Reason:</strong> {example["reason"]}</div>' if example["reason"] not in ["N/A", "None"] else ""}
{f'<div style="margin-top: 10px;"><strong>Evidence:</strong> {example["evidence"]}</div>' if example["evidence"] not in ["N/A", "None"] else ""}
</div>
</div>
<div style="margin-bottom: 15px;">
<h5 style="margin: 0 0 8px 0; color: #333; font-size: 14px;">π¬ {"Response Comparison" if example.get('is_side_by_side', False) else "Conversation"}</h5>
<div style="border-radius: 6px; font-size: 13px; line-height: 1.5;">
{conversation_html}
</div>
</div>
</div>
</details>
"""
html += "</div>"
return html
# ---------------------------------------------------------------------------
# Legacy function aliases (backward compatibility)
# ---------------------------------------------------------------------------
def compute_model_rankings(*args, **kwargs):
"""Legacy alias β forwards to compute_model_rankings_new."""
return compute_model_rankings_new(*args, **kwargs)
def create_model_summary_card(*args, **kwargs):
"""Legacy alias β forwards to create_model_summary_card_new."""
return create_model_summary_card_new(*args, **kwargs)
def get_total_clusters_count(metrics: Dict[str, Any]) -> int:
"""Get the total number of clusters from the metrics data."""
cluster_scores = metrics.get("cluster_scores", {})
# Filter out "No properties" clusters
cluster_scores = {k: v for k, v in cluster_scores.items() if k != "No properties"}
return len(cluster_scores)
def get_light_color_for_cluster(cluster_name: str, index: int) -> str:
"""Generate a light dusty blue background for cluster boxes.
Returns a consistent light dusty blue color for all clusters.
"""
return "#f0f4f8" # Very light dusty blue
__all__ = [
"get_model_clusters",
"get_all_models",
"get_all_clusters",
"format_confidence_interval",
"get_confidence_interval_width",
"has_confidence_intervals",
"extract_quality_score",
"get_top_clusters_for_model",
"compute_model_rankings_new",
"create_model_summary_card_new",
"format_cluster_dataframe",
"truncate_cluster_name",
"create_frequency_comparison_table",
"create_frequency_comparison_plots",
"search_clusters_by_text",
"search_clusters_only",
"create_interactive_cluster_viewer",
"get_cluster_statistics",
"get_unique_values_for_dropdowns",
"get_example_data",
"format_examples_display",
"compute_model_rankings",
"create_model_summary_card",
"get_total_clusters_count",
] |