Spaces:
Sleeping
Sleeping
File size: 7,329 Bytes
82df48f 407a5fa 8718399 65762c4 407a5fa 0cfce88 7a3e379 0cfce88 5f71263 4564834 5f71263 0cfce88 4564834 0cfce88 4564834 5f71263 0cfce88 5f71263 0cfce88 5f71263 0cfce88 4564834 0cfce88 5f71263 0cfce88 4564834 0cfce88 4564834 0cfce88 4564834 7a3e379 4564834 0cfce88 4564834 0cfce88 7a3e379 82df48f 4564834 e2bc0a8 82df48f 407a5fa 4564834 0cfce88 4564834 407a5fa 4564834 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr
import numpy as np
import random
import logging
import sys
import os
from PIL import Image as PILImage
# 设置日志记录
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout)
logger = logging.getLogger(__name__)
# 补丁修复 Gradio JSON Schema 错误
try:
import gradio_client.utils
# 保存原始函数
original_get_type = gradio_client.utils.get_type
# 创建新的 get_type 函数,处理布尔值
def patched_get_type(schema):
if schema is True or schema is False or schema is None:
return "any"
if not isinstance(schema, dict):
return "any"
return original_get_type(schema)
# 替换原始函数
gradio_client.utils.get_type = patched_get_type
logger.info("Successfully patched gradio_client.utils.get_type")
# 同样修补 _json_schema_to_python_type 函数
original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
def patched_json_schema_to_python_type(schema, defs=None):
if schema is True or schema is False:
return "bool"
if schema is None:
return "None"
if not isinstance(schema, dict):
return "any"
try:
return original_json_schema_to_python_type(schema, defs)
except Exception as e:
logger.warning(f"Error in json_schema_to_python_type: {e}")
return "any"
gradio_client.utils._json_schema_to_python_type = patched_json_schema_to_python_type
logger.info("Successfully patched gradio_client.utils._json_schema_to_python_type")
except Exception as e:
logger.error(f"Failed to patch Gradio utils: {e}")
# 创建一个备用图像
def create_backup_image(prompt=""):
logger.info(f"创建备用图像: {prompt}")
img = PILImage.new('RGB', (512, 512), color=(240, 240, 250))
try:
from PIL import ImageDraw, ImageFont
draw = ImageDraw.Draw(img)
font = ImageFont.load_default()
draw.text((20, 20), f"提示词: {prompt}", fill=(0, 0, 0), font=font)
draw.text((20, 60), "模型加载失败,无法生成图像", fill=(255, 0, 0), font=font)
except Exception as e:
logger.error(f"创建备用图像时出错: {e}")
return img
# 预加载 AI 模型
model = None
def load_model():
global model
if model is not None:
return model
try:
logger.info("开始加载AI模型...")
# 延迟导入,确保所有依赖都已正确安装
import torch
from diffusers import StableDiffusionPipeline
# 使用较低版本的模型
model_id = "CompVis/stable-diffusion-v1-4"
# 设置加载参数
load_options = {
"revision": "fp16" if torch.cuda.is_available() else None,
"torch_dtype": torch.float16 if torch.cuda.is_available() else torch.float32,
"safety_checker": None
}
logger.info(f"使用模型: {model_id}")
pipe = StableDiffusionPipeline.from_pretrained(model_id, **load_options)
# 转移到适当的设备
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipe.to(device)
# 优化
if torch.cuda.is_available():
pipe.enable_attention_slicing()
logger.info("AI模型加载成功")
model = pipe
return model
except Exception as e:
logger.error(f"AI模型加载失败: {e}")
return None
# AI 图像生成函数
def generate_ai_image(prompt, seed=None):
# 尝试加载模型
pipe = load_model()
if pipe is None:
logger.error("AI模型不可用")
return None
try:
logger.info(f"使用AI生成图像: {prompt}")
# 设置生成参数
if seed is None:
seed = random.randint(0, 2147483647)
# 确定正确的设备
generator = torch.Generator("cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
# 生成图像
image = pipe(
prompt=prompt,
guidance_scale=7.5,
num_inference_steps=5, # 降低步数以加快速度
generator=generator,
height=512,
width=512
).images[0]
# 清理缓存
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info(f"AI图像生成成功,种子: {seed}")
return image
except Exception as e:
logger.error(f"AI图像生成失败: {e}")
return None
# 入口点函数 - 处理请求并生成图像
def generate_image(prompt):
# 处理空提示
if not prompt or prompt.strip() == "":
prompt = "a beautiful landscape"
logger.info(f"输入为空,使用默认提示词: {prompt}")
logger.info(f"收到提示词: {prompt}")
# 尝试使用AI生成
image = generate_ai_image(prompt)
# 检查结果
if image is not None:
return image
else:
logger.warning("使用备用生成器")
return create_backup_image(prompt)
# 创建Gradio界面
def create_demo():
with gr.Blocks(title="AI 文本到图像生成器") as demo:
gr.Markdown("# AI 文本到图像生成器")
gr.Markdown("输入文本描述,AI将为你生成相应的图像。")
with gr.Row():
with gr.Column(scale=3):
# 输入区域
prompt_input = gr.Textbox(
label="输入提示词",
placeholder="描述你想要的图像,例如:一只可爱的猫,日落下的山脉...",
lines=2
)
generate_button = gr.Button("生成图像", variant="primary")
# 示例
gr.Examples(
examples=[
"a cute cat sitting on a windowsill",
"beautiful sunset over mountains",
"an astronaut riding a horse in space",
"a fantasy castle on a floating island"
],
inputs=prompt_input
)
# 输出区域
with gr.Column(scale=5):
output_image = gr.Image(label="生成的图像", type="pil")
# 绑定按钮事件
generate_button.click(
fn=generate_image,
inputs=prompt_input,
outputs=output_image
)
# 也绑定Enter键提交
prompt_input.submit(
fn=generate_image,
inputs=prompt_input,
outputs=output_image
)
return demo
# 创建演示界面
demo = create_demo()
# 启动应用
if __name__ == "__main__":
try:
logger.info("启动Gradio界面...")
demo.launch(
server_name="0.0.0.0",
show_api=False,
share=False
)
except Exception as e:
logger.error(f"启动失败: {e}")
|