File size: 5,986 Bytes
82df48f
 
 
407a5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82df48f
 
 
 
 
 
 
 
407a5fa
 
 
82df48f
 
 
 
 
407a5fa
 
 
 
 
 
 
82df48f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407a5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82df48f
 
 
 
 
 
 
 
 
 
 
 
 
 
407a5fa
 
 
 
82df48f
 
407a5fa
 
 
 
 
 
82df48f
 
407a5fa
82df48f
407a5fa
 
 
 
 
 
 
 
82df48f
 
407a5fa
 
 
 
82df48f
407a5fa
82df48f
 
407a5fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82df48f
 
407a5fa
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import gradio as gr
import numpy as np
import random
import logging
import sys

# 设置日志记录
logging.basicConfig(level=logging.INFO, 
                    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
                    stream=sys.stdout)
logger = logging.getLogger(__name__)

# 修复 Gradio JSON Schema 错误
try:
    import gradio_client.utils
    # 添加对布尔值的检查
    original_get_type = gradio_client.utils.get_type
    def patched_get_type(schema):
        if isinstance(schema, bool):
            return "bool"
        if not isinstance(schema, dict):
            return "any"
        return original_get_type(schema)
    gradio_client.utils.get_type = patched_get_type
    logger.info("Successfully patched Gradio JSON schema processing")
except Exception as e:
    logger.error(f"Failed to patch Gradio: {str(e)}")

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use

logger.info(f"Using device: {device}")
logger.info(f"Loading model: {model_repo_id}")

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

try:
    pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
    pipe = pipe.to(device)
    logger.info("Model loaded successfully")
except Exception as e:
    logger.error(f"Error loading model: {str(e)}")
    raise

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    try:
        logger.info(f"Processing prompt: {prompt}")
        
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
        logger.info(f"Using seed: {seed}, width: {width}, height: {height}")
        
        generator = torch.Generator().manual_seed(seed)

        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

        logger.info("Image generation successful")
        return image, seed
    except Exception as e:
        logger.error(f"Error in inference: {str(e)}")
        raise gr.Error(f"Error generating image: {str(e)}")

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

try:
    with gr.Blocks(css=css) as demo:
        with gr.Column(elem_id="col-container"):
            gr.Markdown(" # Text-to-Image Gradio Template")

            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )

                run_button = gr.Button("Run", scale=0, variant="primary")

            result = gr.Image(label="Result", show_label=False)

            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=True, # 改为可见
                )

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )

                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )

                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=0.0,
                    )

                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=2,
                    )

            gr.Examples(examples=examples, inputs=[prompt])
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[
                prompt,
                negative_prompt,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
            ],
            outputs=[result, seed],
        )
    
    logger.info("Gradio interface created successfully")
except Exception as e:
    logger.error(f"Error creating Gradio interface: {str(e)}")
    raise

if __name__ == "__main__":
    try:
        logger.info("Starting Gradio app")
        demo.launch()
    except Exception as e:
        logger.error(f"Error launching app: {str(e)}")