Spaces:
Sleeping
Sleeping
File size: 5,986 Bytes
82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa 82df48f 407a5fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
import numpy as np
import random
import logging
import sys
# 设置日志记录
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout)
logger = logging.getLogger(__name__)
# 修复 Gradio JSON Schema 错误
try:
import gradio_client.utils
# 添加对布尔值的检查
original_get_type = gradio_client.utils.get_type
def patched_get_type(schema):
if isinstance(schema, bool):
return "bool"
if not isinstance(schema, dict):
return "any"
return original_get_type(schema)
gradio_client.utils.get_type = patched_get_type
logger.info("Successfully patched Gradio JSON schema processing")
except Exception as e:
logger.error(f"Failed to patch Gradio: {str(e)}")
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
logger.info(f"Using device: {device}")
logger.info(f"Loading model: {model_repo_id}")
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
try:
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
try:
logger.info(f"Processing prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
logger.info(f"Using seed: {seed}, width: {width}, height: {height}")
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
logger.info("Image generation successful")
return image, seed
except Exception as e:
logger.error(f"Error in inference: {str(e)}")
raise gr.Error(f"Error generating image: {str(e)}")
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
try:
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image Gradio Template")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True, # 改为可见
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
logger.info("Gradio interface created successfully")
except Exception as e:
logger.error(f"Error creating Gradio interface: {str(e)}")
raise
if __name__ == "__main__":
try:
logger.info("Starting Gradio app")
demo.launch()
except Exception as e:
logger.error(f"Error launching app: {str(e)}")
|