hellohf / app.py
lisonallen's picture
Refactor app.py for improved error handling and simplify Gradio interface; downgrade gradio version in requirements.txt
e2bc0a8
raw
history blame
5.08 kB
import gradio as gr
import numpy as np
import random
import logging
import sys
# 设置日志记录
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
stream=sys.stdout)
logger = logging.getLogger(__name__)
# 修复 Gradio JSON Schema 错误
try:
import gradio_client.utils
# 添加对布尔值的检查
original_get_type = gradio_client.utils.get_type
def patched_get_type(schema):
if isinstance(schema, bool):
return "bool"
if not isinstance(schema, dict):
return "any"
return original_get_type(schema)
gradio_client.utils.get_type = patched_get_type
logger.info("Successfully patched Gradio JSON schema processing")
except Exception as e:
logger.error(f"Failed to patch Gradio: {str(e)}")
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline
import torch
# 使用 try/except 避免在导入模块时出错
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo"
logger.info(f"Using device: {device}")
logger.info(f"Loading model: {model_repo_id}")
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
logger.info("Model loaded successfully")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
except Exception as e:
logger.error(f"Error during setup: {str(e)}")
# 不立即抛出异常,让 Gradio 界面可以加载
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
try:
logger.info(f"Processing prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
logger.info(f"Using seed: {seed}, width: {width}, height: {height}")
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
logger.info("Image generation successful")
return image, seed
except Exception as e:
logger.error(f"Error in inference: {str(e)}")
return None, seed # 返回 None 而不是抛出异常
# 定义示例
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
# 简化 CSS
css = "#col-container { margin: 0 auto; max-width: 640px; }"
# 创建简化版的 Gradio 界面
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text-to-Image Generator")
# 主输入区域
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt")
run_button = gr.Button("Generate Image")
# 结果显示
result = gr.Image(label="Generated Image")
seed_text = gr.Number(label="Seed Used")
# 高级设置(折叠)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What to exclude from the image")
# 种子设置
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
# 尺寸设置
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
# 生成参数
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=2)
# 示例
gr.Examples(examples, inputs=prompt)
# 绑定事件处理
run_button.click(
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed_text],
)
# 启动应用
if __name__ == "__main__":
try:
logger.info("Starting Gradio app")
demo.launch()
except Exception as e:
logger.error(f"Error launching app: {str(e)}")