Spaces:
Running
Running
Commit
·
a0be010
1
Parent(s):
65762c4
Extreme simplification for stability
Browse files- app.py +80 -124
- requirements.txt +6 -7
app.py
CHANGED
@@ -5,7 +5,6 @@ import logging
|
|
5 |
import sys
|
6 |
import os
|
7 |
from PIL import Image as PILImage
|
8 |
-
import io
|
9 |
|
10 |
# 设置日志记录
|
11 |
logging.basicConfig(level=logging.INFO,
|
@@ -13,88 +12,61 @@ logging.basicConfig(level=logging.INFO,
|
|
13 |
stream=sys.stdout)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
# 确保缓存目录存在
|
17 |
-
os.makedirs(".gradio/cached_examples", exist_ok=True)
|
18 |
-
|
19 |
-
# 修复 Gradio JSON Schema 错误
|
20 |
-
try:
|
21 |
-
import gradio_client.utils
|
22 |
-
|
23 |
-
# 保存原始函数
|
24 |
-
original_get_type = gradio_client.utils.get_type
|
25 |
-
original_json_schema_to_python_type = gradio_client.utils._json_schema_to_python_type
|
26 |
-
|
27 |
-
# 修复 get_type 函数
|
28 |
-
def patched_get_type(schema):
|
29 |
-
if isinstance(schema, bool):
|
30 |
-
return "bool"
|
31 |
-
if not isinstance(schema, dict):
|
32 |
-
return "any"
|
33 |
-
return original_get_type(schema)
|
34 |
-
|
35 |
-
# 修复 _json_schema_to_python_type 函数
|
36 |
-
def patched_json_schema_to_python_type(schema, defs=None):
|
37 |
-
# 处理基本类型
|
38 |
-
if schema is True or schema is False:
|
39 |
-
return "bool"
|
40 |
-
if schema is None:
|
41 |
-
return "None"
|
42 |
-
if not isinstance(schema, dict):
|
43 |
-
return "any"
|
44 |
-
|
45 |
-
try:
|
46 |
-
return original_json_schema_to_python_type(schema, defs)
|
47 |
-
except Exception as e:
|
48 |
-
logger.warning(f"Error in JSON schema parsing: {str(e)}")
|
49 |
-
return "any" # 作为备用类型返回
|
50 |
-
|
51 |
-
# 应用补丁
|
52 |
-
gradio_client.utils.get_type = patched_get_type
|
53 |
-
gradio_client.utils._json_schema_to_python_type = patched_json_schema_to_python_type
|
54 |
-
|
55 |
-
logger.info("Successfully patched Gradio JSON schema processing")
|
56 |
-
except Exception as e:
|
57 |
-
logger.error(f"Failed to patch Gradio: {str(e)}")
|
58 |
-
|
59 |
# 创建一个简单的示例图像,在模型加载失败或生成失败时使用
|
60 |
def create_dummy_image():
|
61 |
-
#
|
62 |
-
img = PILImage.new('RGB', (256, 256), color = (255,
|
63 |
return img
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
import torch
|
69 |
-
|
70 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
71 |
-
model_repo_id = "stabilityai/sdxl-turbo"
|
72 |
-
|
73 |
-
logger.info(f"Using device: {device}")
|
74 |
-
logger.info(f"Loading model: {model_repo_id}")
|
75 |
-
|
76 |
-
if torch.cuda.is_available():
|
77 |
-
torch_dtype = torch.float16
|
78 |
-
else:
|
79 |
-
torch_dtype = torch.float32
|
80 |
-
|
81 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
82 |
-
pipe = pipe.to(device)
|
83 |
-
logger.info("Model loaded successfully")
|
84 |
-
|
85 |
-
MAX_SEED = np.iinfo(np.int32).max
|
86 |
-
except Exception as e:
|
87 |
-
logger.error(f"Error loading model: {str(e)}")
|
88 |
-
# 创建一个空的函数以避免错误
|
89 |
-
pipe = None
|
90 |
|
91 |
-
#
|
92 |
def generate_image(prompt):
|
|
|
|
|
93 |
try:
|
|
|
94 |
if pipe is None:
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
|
|
98 |
if not prompt or prompt.strip() == "":
|
99 |
prompt = "A beautiful landscape"
|
100 |
logger.info(f"Empty prompt, using default: {prompt}")
|
@@ -103,79 +75,63 @@ def generate_image(prompt):
|
|
103 |
seed = random.randint(0, MAX_SEED)
|
104 |
generator = torch.Generator().manual_seed(seed)
|
105 |
|
106 |
-
#
|
107 |
try:
|
|
|
108 |
image = pipe(
|
109 |
prompt=prompt,
|
110 |
-
guidance_scale=0.0,
|
111 |
-
num_inference_steps=
|
112 |
-
generator=generator
|
|
|
|
|
113 |
).images[0]
|
114 |
|
115 |
-
#
|
116 |
if not isinstance(image, PILImage.Image):
|
117 |
-
logger.warning(
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
image = PILImage.fromarray(np.array(image))
|
122 |
-
|
123 |
-
# 转换为 RGB 模式,确保兼容性
|
124 |
if image.mode != 'RGB':
|
125 |
image = image.convert('RGB')
|
126 |
|
127 |
logger.info("Image generation successful")
|
128 |
-
# 保存图像以供调试
|
129 |
-
debug_path = "debug_image.jpg"
|
130 |
-
image.save(debug_path)
|
131 |
-
logger.info(f"Debug image saved to {debug_path}")
|
132 |
|
|
|
|
|
|
|
|
|
133 |
return image
|
134 |
-
|
135 |
-
|
|
|
136 |
return create_dummy_image()
|
137 |
|
138 |
except Exception as e:
|
139 |
-
logger.error(f"
|
140 |
return create_dummy_image()
|
141 |
|
142 |
-
#
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
image_output = gr.Image(label="Generated Image", type="pil")
|
153 |
-
|
154 |
-
# 示例
|
155 |
-
gr.Examples(
|
156 |
-
examples=["A cute cat", "Sunset over mountains"],
|
157 |
-
inputs=prompt_input,
|
158 |
-
outputs=image_output,
|
159 |
-
fn=generate_image,
|
160 |
-
cache_examples=False
|
161 |
-
)
|
162 |
-
|
163 |
-
# 绑定生成按钮
|
164 |
-
generate_button.click(fn=generate_image, inputs=prompt_input, outputs=image_output)
|
165 |
-
|
166 |
-
# 直接绑定文本框的提交事件
|
167 |
-
prompt_input.submit(fn=generate_image, inputs=prompt_input, outputs=image_output)
|
168 |
|
169 |
# 启动应用
|
170 |
if __name__ == "__main__":
|
171 |
try:
|
172 |
logger.info("Starting Gradio app")
|
173 |
-
# 添加更多启动选项,以提高稳定性
|
174 |
demo.launch(
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
)
|
180 |
except Exception as e:
|
181 |
logger.error(f"Error launching app: {str(e)}")
|
|
|
5 |
import sys
|
6 |
import os
|
7 |
from PIL import Image as PILImage
|
|
|
8 |
|
9 |
# 设置日志记录
|
10 |
logging.basicConfig(level=logging.INFO,
|
|
|
12 |
stream=sys.stdout)
|
13 |
logger = logging.getLogger(__name__)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# 创建一个简单的示例图像,在模型加载失败或生成失败时使用
|
16 |
def create_dummy_image():
|
17 |
+
# 创建一个简单的彩色图像
|
18 |
+
img = PILImage.new('RGB', (256, 256), color = (255, 100, 100))
|
19 |
return img
|
20 |
|
21 |
+
# 全局变量,管理模型状态
|
22 |
+
pipe = None
|
23 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# 简化的推理函数
|
26 |
def generate_image(prompt):
|
27 |
+
global pipe
|
28 |
+
|
29 |
try:
|
30 |
+
# 懒加载模型 - 仅在第一次调用时加载
|
31 |
if pipe is None:
|
32 |
+
try:
|
33 |
+
logger.info("First request - loading model...")
|
34 |
+
from diffusers import DiffusionPipeline
|
35 |
+
import torch
|
36 |
+
|
37 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
38 |
+
model_repo_id = "stabilityai/sdxl-turbo"
|
39 |
+
|
40 |
+
logger.info(f"Using device: {device}")
|
41 |
+
logger.info(f"Loading model: {model_repo_id}")
|
42 |
+
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
torch_dtype = torch.float16
|
45 |
+
else:
|
46 |
+
torch_dtype = torch.float32
|
47 |
+
|
48 |
+
# 优化内存使用
|
49 |
+
pipe = DiffusionPipeline.from_pretrained(
|
50 |
+
model_repo_id,
|
51 |
+
torch_dtype=torch_dtype,
|
52 |
+
variant="fp16" if torch.cuda.is_available() else None,
|
53 |
+
use_safetensors=True
|
54 |
+
)
|
55 |
+
pipe = pipe.to(device)
|
56 |
+
|
57 |
+
# 优化内存
|
58 |
+
if torch.cuda.is_available():
|
59 |
+
pipe.enable_attention_slicing()
|
60 |
+
# 释放不必要的内存
|
61 |
+
torch.cuda.empty_cache()
|
62 |
+
|
63 |
+
logger.info("Model loaded successfully")
|
64 |
+
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error loading model: {str(e)}")
|
67 |
+
return create_dummy_image()
|
68 |
|
69 |
+
# 处理空提示
|
70 |
if not prompt or prompt.strip() == "":
|
71 |
prompt = "A beautiful landscape"
|
72 |
logger.info(f"Empty prompt, using default: {prompt}")
|
|
|
75 |
seed = random.randint(0, MAX_SEED)
|
76 |
generator = torch.Generator().manual_seed(seed)
|
77 |
|
78 |
+
# 简化参数和异常处理
|
79 |
try:
|
80 |
+
# 使用最小的推理步骤以减轻资源压力
|
81 |
image = pipe(
|
82 |
prompt=prompt,
|
83 |
+
guidance_scale=0.0, # 设为0以获得最快的推理时间
|
84 |
+
num_inference_steps=1, # 减少步骤
|
85 |
+
generator=generator,
|
86 |
+
height=256, # 减小图像尺寸
|
87 |
+
width=256 # 减小图像尺寸
|
88 |
).images[0]
|
89 |
|
90 |
+
# 确保图像是有效的PIL图像
|
91 |
if not isinstance(image, PILImage.Image):
|
92 |
+
logger.warning("Converting image to PIL format")
|
93 |
+
image = PILImage.fromarray(np.array(image))
|
94 |
+
|
95 |
+
# 转换图像模式
|
|
|
|
|
|
|
96 |
if image.mode != 'RGB':
|
97 |
image = image.convert('RGB')
|
98 |
|
99 |
logger.info("Image generation successful")
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# 释放内存
|
102 |
+
if torch.cuda.is_available():
|
103 |
+
torch.cuda.empty_cache()
|
104 |
+
|
105 |
return image
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
logger.error(f"Error in image generation: {str(e)}")
|
109 |
return create_dummy_image()
|
110 |
|
111 |
except Exception as e:
|
112 |
+
logger.error(f"Unexpected error: {str(e)}")
|
113 |
return create_dummy_image()
|
114 |
|
115 |
+
# 使用最简单的界面
|
116 |
+
demo = gr.Interface(
|
117 |
+
fn=generate_image,
|
118 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
119 |
+
outputs=gr.Image(label="Generated Image", type="pil"),
|
120 |
+
title="SDXL Turbo Text-to-Image",
|
121 |
+
description="Enter a text prompt to generate an image.",
|
122 |
+
examples=["A cute cat"], # 只保留一个简单示例
|
123 |
+
cache_examples=False
|
124 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# 启动应用
|
127 |
if __name__ == "__main__":
|
128 |
try:
|
129 |
logger.info("Starting Gradio app")
|
|
|
130 |
demo.launch(
|
131 |
+
server_name="0.0.0.0",
|
132 |
+
server_port=7860,
|
133 |
+
show_api=False, # 禁用API
|
134 |
+
share=False
|
135 |
)
|
136 |
except Exception as e:
|
137 |
logger.error(f"Error launching app: {str(e)}")
|
requirements.txt
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
-
accelerate
|
2 |
-
diffusers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
gradio==3.34.0
|
|
|
1 |
+
accelerate==0.21.0
|
2 |
+
diffusers==0.20.0
|
3 |
+
torch==2.0.1
|
4 |
+
transformers==4.34.0
|
5 |
+
gradio==3.32.0
|
6 |
+
Pillow==10.0.0
|
|