Spaces:
Sleeping
Sleeping
Commit
·
ae398e9
1
Parent(s):
8c6d7f4
Switch to API-based image generation for better compatibility with Hugging Face Spaces
Browse files- app.py +114 -70
- requirements.txt +3 -8
app.py
CHANGED
@@ -4,6 +4,10 @@ import random
|
|
4 |
import logging
|
5 |
import sys
|
6 |
import os
|
|
|
|
|
|
|
|
|
7 |
from PIL import Image as PILImage
|
8 |
|
9 |
# 设置日志记录
|
@@ -75,74 +79,112 @@ def create_backup_image(prompt=""):
|
|
75 |
# 预加载图像用于快速响应
|
76 |
PLACEHOLDER_IMAGE = create_backup_image("placeholder")
|
77 |
|
78 |
-
#
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
94 |
|
95 |
-
#
|
96 |
-
if
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
try:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
model_id,
|
112 |
-
torch_dtype=torch_dtype,
|
113 |
-
use_auth_token=False, # 明确不使用认证
|
114 |
-
safety_checker=None, # 禁用安全检查器
|
115 |
-
)
|
116 |
-
pipe = pipe.to(device)
|
117 |
-
|
118 |
-
# 优化内存
|
119 |
-
if torch.cuda.is_available():
|
120 |
-
pipe.enable_attention_slicing()
|
121 |
-
torch.cuda.empty_cache()
|
122 |
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
#
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
|
|
|
|
|
|
143 |
except Exception as e:
|
144 |
-
logger.error(f"
|
145 |
-
return
|
146 |
|
147 |
# 使用简单的规则生成图像作为备用方案
|
148 |
def generate_rule_based_image(prompt):
|
@@ -235,17 +277,19 @@ def generate_image(prompt):
|
|
235 |
|
236 |
logger.info(f"Received prompt: {prompt}")
|
237 |
|
238 |
-
# 尝试使用
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
246 |
|
247 |
-
#
|
248 |
-
logger.warning("
|
249 |
return generate_rule_based_image(prompt)
|
250 |
|
251 |
# 为旧版 gradio 创建界面
|
@@ -260,7 +304,7 @@ def create_demo():
|
|
260 |
),
|
261 |
outputs=gr.Image(label="Generated Image", type="pil"),
|
262 |
title="Text to Image Generator",
|
263 |
-
description="Enter a text description to generate an image.",
|
264 |
examples=[
|
265 |
"a cute cat sitting on a windowsill",
|
266 |
"beautiful sunset over mountains",
|
|
|
4 |
import logging
|
5 |
import sys
|
6 |
import os
|
7 |
+
import requests
|
8 |
+
import io
|
9 |
+
import json
|
10 |
+
import base64
|
11 |
from PIL import Image as PILImage
|
12 |
|
13 |
# 设置日志记录
|
|
|
79 |
# 预加载图像用于快速响应
|
80 |
PLACEHOLDER_IMAGE = create_backup_image("placeholder")
|
81 |
|
82 |
+
# 使用 Hugging Face Inference API 生成图像
|
83 |
+
def generate_image_with_api(prompt, api_url=None, api_key=None):
|
84 |
+
"""
|
85 |
+
使用 Hugging Face Inference API 生成图像
|
86 |
+
|
87 |
+
Parameters:
|
88 |
+
- prompt: 文本提示
|
89 |
+
- api_url: API 端点 URL (可选)
|
90 |
+
- api_key: API 密钥 (可选)
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
- PIL Image
|
94 |
+
"""
|
95 |
+
logger.info(f"Generating image via API for: {prompt}")
|
96 |
+
|
97 |
+
# 默认使用 Stable Diffusion API
|
98 |
+
if api_url is None:
|
99 |
+
api_url = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
|
100 |
|
101 |
+
# 尝试从环境变量中获取 API 密钥
|
102 |
+
if api_key is None:
|
103 |
+
api_key = os.environ.get("HF_API_KEY", "")
|
104 |
+
|
105 |
+
# 如果没有 API 密钥,使用公共访问(可能会受到速率限制)
|
106 |
+
headers = {}
|
107 |
+
if api_key:
|
108 |
+
headers["Authorization"] = f"Bearer {api_key}"
|
109 |
|
110 |
try:
|
111 |
+
# 设置请求参数
|
112 |
+
payload = {
|
113 |
+
"inputs": prompt,
|
114 |
+
"parameters": {
|
115 |
+
"num_inference_steps": 10, # 减少推理步骤以加快速度
|
116 |
+
"guidance_scale": 7.5,
|
117 |
+
"width": 512,
|
118 |
+
"height": 512
|
119 |
+
}
|
120 |
+
}
|
121 |
|
122 |
+
# 发送请求
|
123 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
+
# 检查响应是否成功
|
126 |
+
if response.status_code == 200:
|
127 |
+
# 从响应中获取图像
|
128 |
+
image = PILImage.open(io.BytesIO(response.content))
|
129 |
+
logger.info("Successfully generated image via API")
|
130 |
+
return image
|
131 |
+
else:
|
132 |
+
# 如果遇到错误,记录响应并返回备用图像
|
133 |
+
error_text = response.text
|
134 |
+
logger.error(f"API error: {response.status_code}, {error_text}")
|
135 |
+
return None
|
136 |
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Failed to generate image via API: {e}")
|
139 |
+
return None
|
140 |
+
|
141 |
+
# 使用 Hugging Face Spaces 内置模型生成图像
|
142 |
+
def generate_image_with_spaces(prompt):
|
143 |
+
"""使用同一个 Hugging Face Space 内的其他公共空间来生成图像"""
|
144 |
+
logger.info(f"Generating image via Spaces for: {prompt}")
|
145 |
+
|
146 |
+
try:
|
147 |
+
# 一些公共可用的 Stable Diffusion 空间 URLs
|
148 |
+
space_urls = [
|
149 |
+
"https://huggingface-projects-stable-diffusion-demo.hf.space/api/predict",
|
150 |
+
"https://huggingface-projects-text-to-image.hf.space/api/predict",
|
151 |
+
"https://dataautogpt-playground.hf.space/api/predict"
|
152 |
+
]
|
153 |
|
154 |
+
# 尝试每个 URL 直到成功
|
155 |
+
for url in space_urls:
|
156 |
+
try:
|
157 |
+
payload = {
|
158 |
+
"data": [prompt, 7.5, 512, 512]
|
159 |
+
}
|
160 |
+
response = requests.post(url, json=payload, timeout=30)
|
161 |
+
|
162 |
+
if response.status_code == 200:
|
163 |
+
# 解析 JSON 响应
|
164 |
+
result = response.json()
|
165 |
+
|
166 |
+
# 根据结果格式提取图像数据
|
167 |
+
if isinstance(result, dict) and 'data' in result:
|
168 |
+
image_data = result['data'][0]
|
169 |
+
|
170 |
+
# 检查图像数据格式
|
171 |
+
if image_data.startswith('data:image'):
|
172 |
+
# 提取 base64 图像数据
|
173 |
+
image_b64 = image_data.split(',')[1]
|
174 |
+
image_bytes = base64.b64decode(image_b64)
|
175 |
+
image = PILImage.open(io.BytesIO(image_bytes))
|
176 |
+
logger.info(f"Successfully generated image via {url}")
|
177 |
+
return image
|
178 |
+
except Exception as e:
|
179 |
+
logger.warning(f"Failed to generate with {url}: {e}")
|
180 |
+
continue
|
181 |
|
182 |
+
logger.error("All space URLs failed")
|
183 |
+
return None
|
184 |
+
|
185 |
except Exception as e:
|
186 |
+
logger.error(f"Failed to generate image via Spaces: {e}")
|
187 |
+
return None
|
188 |
|
189 |
# 使用简单的规则生成图像作为备用方案
|
190 |
def generate_rule_based_image(prompt):
|
|
|
277 |
|
278 |
logger.info(f"Received prompt: {prompt}")
|
279 |
|
280 |
+
# 尝试使用 Hugging Face API 生成
|
281 |
+
image = generate_image_with_api(prompt)
|
282 |
+
if image is not None:
|
283 |
+
return image
|
284 |
+
|
285 |
+
# 如果 API 方法失败,尝试使用 Spaces
|
286 |
+
logger.info("API method failed, trying Spaces method...")
|
287 |
+
image = generate_image_with_spaces(prompt)
|
288 |
+
if image is not None:
|
289 |
+
return image
|
290 |
|
291 |
+
# 如果所有 AI 方法都失败,使用规则生成
|
292 |
+
logger.warning("All AI methods failed, using rule-based image generation")
|
293 |
return generate_rule_based_image(prompt)
|
294 |
|
295 |
# 为旧版 gradio 创建界面
|
|
|
304 |
),
|
305 |
outputs=gr.Image(label="Generated Image", type="pil"),
|
306 |
title="Text to Image Generator",
|
307 |
+
description="Enter a text description to generate an image. This demo uses Hugging Face API for image generation.",
|
308 |
examples=[
|
309 |
"a cute cat sitting on a windowsill",
|
310 |
"beautiful sunset over mountains",
|
requirements.txt
CHANGED
@@ -1,8 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
torch==1.13.1
|
5 |
-
transformers>=4.25.1
|
6 |
-
safetensors>=0.3.1
|
7 |
-
gradio>=3.19.1,<3.25.0
|
8 |
-
Pillow>=9.0.0,<10.0.0
|
|
|
1 |
+
requests>=2.26.0
|
2 |
+
Pillow>=9.0.0,<10.0.0
|
3 |
+
gradio>=3.19.1,<3.25.0
|
|
|
|
|
|
|
|
|
|