Commit
35a6fb3
·
1 Parent(s): 32b39e3

Update space

Browse files
Files changed (2) hide show
  1. app.py +96 -50
  2. requirements.txt +5 -1
app.py CHANGED
@@ -1,64 +1,110 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import torch
2
  import gradio as gr
3
+ from tokenizers import Tokenizer
4
+ from transformers import PreTrainedTokenizerFast
5
 
6
+ from transformer_chat import TransformerChatbot
 
 
 
7
 
8
+ # Load tokenizer & wrap for HF API
9
+ tokenizer_obj = Tokenizer.from_file("tokenizer.json")
10
+ hf_tok = PreTrainedTokenizerFast(
11
+ tokenizer_object=tokenizer_obj,
12
+ unk_token="[UNK]",
13
+ pad_token="[PAD]",
14
+ cls_token="[CLS]",
15
+ sep_token="[SEP]",
16
+ mask_token="[MASK]"
17
+ )
18
 
19
+ # Load model
20
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
21
+ model = TransformerChatbot(
22
+ vocab_size=hf_tok.vocab_size,
23
+ d_model=512, num_heads=8, d_ff=2048,
24
+ num_encoder_layers=6, num_decoder_layers=6,
25
+ num_roles=2, max_turns=16, num_slots=22,
26
+ dropout=0.1
27
+ ).to(device)
28
+ model.load_state_dict(torch.load("atis_transformer.pt", map_location=device))
29
+ model.eval()
30
 
31
+ # Generation function
32
+ def chat_fn(prompt):
33
+ # Encode user input
34
+ enc = hf_tok(prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
35
+ src_ids = enc.input_ids.to(device)
36
+ # For cross-attention, we don't need to mask the encoder output
37
+ src_mask = None
38
 
39
+ # Roles & turns (user=0)
40
+ roles = torch.zeros_like(src_ids)
41
+ turns = torch.zeros_like(src_ids)
42
 
43
+ # Encode
44
+ with torch.no_grad():
45
+ enc_out = model.encode(src_ids, roles, turns, src_mask)
46
 
47
+ # Generate reply token-by-token
48
+ cls_id = hf_tok.cls_token_id
49
+ sep_id = hf_tok.sep_token_id
50
+ dec_input = torch.tensor([[cls_id]], device=device)
51
+ dec_roles = torch.zeros_like(dec_input)
52
+ dec_turns = torch.zeros_like(dec_input)
 
 
53
 
54
+ generated = []
55
+ for step in range(50):
56
+ T = dec_input.size(1)
57
+ # Create causal mask for decoder (upper triangular = masked)
58
+ # PyTorch's MultiheadAttention expects a 2D mask where True = masked
59
+ causal_mask = torch.triu(torch.ones((T, T), device=device), diagonal=1).bool()
60
+ tgt_mask = causal_mask
61
 
62
+ logits = model.decode(dec_input, enc_out, dec_roles, dec_turns, src_mask, tgt_mask)
63
+
64
+ # Get the last token's logits
65
+ last_logits = logits[0, -1, :]
66
+
67
+ # Apply repetition penalty
68
+ if generated:
69
+ for token_id in set(generated):
70
+ last_logits[token_id] *= 0.7 # Penalize repeated tokens
71
+
72
+ # Sample with temperature instead of greedy decoding
73
+ temperature = 0.8
74
+ probs = torch.softmax(last_logits / temperature, dim=-1)
75
+ next_id = torch.multinomial(probs, 1)
76
+
77
+ # Debug: print the token being generated
78
+ token_text = hf_tok.decode([next_id.item()])
79
+ print(f"Step {step}: Generated token ID {next_id.item()} -> '{token_text}'")
80
+
81
+ if next_id.item() == sep_id:
82
+ print("Found SEP token, stopping generation")
83
+ break
84
+
85
+ generated.append(next_id.item())
86
+ dec_input = torch.cat([dec_input, next_id.unsqueeze(0)], dim=1)
87
+ dec_roles = torch.cat([dec_roles, torch.zeros_like(next_id).unsqueeze(0)], dim=1)
88
+ dec_turns = torch.cat([dec_turns, torch.zeros_like(next_id).unsqueeze(0)], dim=1)
89
+
90
+ # Early stopping if we're stuck in a loop
91
+ if len(generated) >= 3 and len(set(generated[-3:])) == 1:
92
+ print("Detected repetition loop, stopping generation")
93
+ break
94
 
95
+ output_ids = [cls_id] + generated + [sep_id]
96
+ reply = hf_tok.decode(output_ids, skip_special_tokens=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ return reply
99
+
100
+ # Build Gradio interface
101
+ interface = gr.Interface(
102
+ fn=chat_fn,
103
+ inputs=gr.Textbox(lines=2, placeholder="Enter your question here..."),
104
+ outputs="text",
105
+ title="Transformer Chatbot Demo (currently trained with ATIS dataset)",
106
+ description="Ask flight-related questions and get an answer."
107
+ )
108
 
109
  if __name__ == "__main__":
110
+ interface.launch(share=True)
requirements.txt CHANGED
@@ -1 +1,5 @@
1
- huggingface_hub==0.25.2
 
 
 
 
 
1
+ huggingface_hub==0.25.2
2
+ torch
3
+ transformers
4
+ tokenizers
5
+ datasets