import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("literallybannedfromcallingbob/Aegis-1B-Agent") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Build prompt with history and system message prompt = f"{system_message}\n" for user, assistant in history: if user: prompt += f"User: {user}\n" if assistant: prompt += f"Assistant: {assistant}\n" prompt += f"User: {message}\nAssistant:" # Call the text_generation endpoint response = client.text_generation( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ) output = "" for r in response: output += r.token.text yield output """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], title="Transformer Chatbot Demo (currently trained with ATIS dataset)", description="Ask flight-related questions and get an answer." ) if __name__ == "__main__": demo.launch()