Spaces:
Runtime error
Runtime error
| import math, os | |
| import pickle | |
| import os.path as op | |
| import numpy as np | |
| import pandas as pd | |
| from joblib import dump, load, Parallel, delayed | |
| from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor | |
| from sklearn.metrics import mean_absolute_error, roc_auc_score | |
| from sklearn.base import BaseEstimator | |
| from tqdm import tqdm | |
| from rdkit import Chem | |
| from rdkit import rdBase | |
| from rdkit.Chem import AllChem | |
| from rdkit import DataStructs | |
| from rdkit.Chem import rdMolDescriptors | |
| rdBase.DisableLog('rdApp.error') | |
| def process_smiles(smiles): | |
| mol = Chem.MolFromSmiles(smiles) | |
| if mol is not None: | |
| return Evaluator.fingerprints_from_mol(mol), 1 | |
| return np.zeros((1, 2048)), 0 | |
| class Evaluator(): | |
| """Scores based on an ECFP classifier.""" | |
| def __init__(self, model_path, task_name, n_jobs=2): | |
| self.n_jobs = n_jobs | |
| task_type = 'regression' | |
| self.task_name = task_name | |
| self.task_type = task_type | |
| self.model_path = model_path | |
| self.metric_func = roc_auc_score if 'classification' in self.task_type else mean_absolute_error | |
| self.model = load(model_path) | |
| def __call__(self, smiles_list): | |
| fps = [] | |
| mask = [] | |
| for i,smiles in enumerate(smiles_list): | |
| mol = Chem.MolFromSmiles(smiles) | |
| mask.append( int(mol is not None) ) | |
| fp = Evaluator.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048)) | |
| fps.append(fp) | |
| fps = np.concatenate(fps, axis=0) | |
| if 'classification' in self.task_type: | |
| scores = self.model.predict_proba(fps)[:, 1] | |
| else: | |
| scores = self.model.predict(fps) | |
| scores = scores * np.array(mask) | |
| return np.float32(scores) | |
| def fingerprints_from_mol(cls, mol): # use ECFP4 | |
| features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048) | |
| features = np.zeros((1,)) | |
| DataStructs.ConvertToNumpyArray(features_vec, features) | |
| return features.reshape(1, -1) | |
| ###### SAS Score ###### | |
| _fscores = None | |
| def readFragmentScores(name='fpscores'): | |
| import gzip | |
| global _fscores | |
| # generate the full path filename: | |
| if name == "fpscores": | |
| name = op.join(op.dirname(__file__), name) | |
| data = pickle.load(gzip.open('%s.pkl.gz' % name)) | |
| outDict = {} | |
| for i in data: | |
| for j in range(1, len(i)): | |
| outDict[i[j]] = float(i[0]) | |
| _fscores = outDict | |
| def numBridgeheadsAndSpiro(mol, ri=None): | |
| nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol) | |
| nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol) | |
| return nBridgehead, nSpiro | |
| def calculateSAS(smiles_list): | |
| scores = [] | |
| for i, smiles in enumerate(smiles_list): | |
| mol = Chem.MolFromSmiles(smiles) | |
| score = calculateScore(mol) | |
| scores.append(score) | |
| return np.float32(scores) | |
| def calculateScore(m): | |
| if _fscores is None: | |
| readFragmentScores() | |
| # fragment score | |
| fp = rdMolDescriptors.GetMorganFingerprint(m, | |
| 2) # <- 2 is the *radius* of the circular fingerprint | |
| fps = fp.GetNonzeroElements() | |
| score1 = 0. | |
| nf = 0 | |
| for bitId, v in fps.items(): | |
| nf += v | |
| sfp = bitId | |
| score1 += _fscores.get(sfp, -4) * v | |
| score1 /= nf | |
| # features score | |
| nAtoms = m.GetNumAtoms() | |
| nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True)) | |
| ri = m.GetRingInfo() | |
| nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri) | |
| nMacrocycles = 0 | |
| for x in ri.AtomRings(): | |
| if len(x) > 8: | |
| nMacrocycles += 1 | |
| sizePenalty = nAtoms**1.005 - nAtoms | |
| stereoPenalty = math.log10(nChiralCenters + 1) | |
| spiroPenalty = math.log10(nSpiro + 1) | |
| bridgePenalty = math.log10(nBridgeheads + 1) | |
| macrocyclePenalty = 0. | |
| # --------------------------------------- | |
| # This differs from the paper, which defines: | |
| # macrocyclePenalty = math.log10(nMacrocycles+1) | |
| # This form generates better results when 2 or more macrocycles are present | |
| if nMacrocycles > 0: | |
| macrocyclePenalty = math.log10(2) | |
| score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty | |
| # correction for the fingerprint density | |
| # not in the original publication, added in version 1.1 | |
| # to make highly symmetrical molecules easier to synthetise | |
| score3 = 0. | |
| if nAtoms > len(fps): | |
| score3 = math.log(float(nAtoms) / len(fps)) * .5 | |
| sascore = score1 + score2 + score3 | |
| # need to transform "raw" value into scale between 1 and 10 | |
| min = -4.0 | |
| max = 2.5 | |
| sascore = 11. - (sascore - min + 1) / (max - min) * 9. | |
| # smooth the 10-end | |
| if sascore > 8.: | |
| sascore = 8. + math.log(sascore + 1. - 9.) | |
| if sascore > 10.: | |
| sascore = 10.0 | |
| elif sascore < 1.: | |
| sascore = 1.0 | |
| return sascore | |