Spaces:
Runtime error
Runtime error
| import spaces | |
| import torch | |
| import torch.nn as nn | |
| import math | |
| import torch.nn.functional as F | |
| class TimestepEmbedder(nn.Module): | |
| """ | |
| Embeds scalar timesteps into vector representations. | |
| """ | |
| def __init__(self, hidden_size, frequency_embedding_size=256): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
| nn.SiLU(), | |
| nn.Linear(hidden_size, hidden_size, bias=True), | |
| ) | |
| self.frequency_embedding_size = frequency_embedding_size | |
| def timestep_embedding(t, dim, max_period=10000): | |
| """ | |
| Create sinusoidal timestep embeddings. | |
| :param t: a 1-D Tensor of N indices, one per batch element. | |
| These may be fractional. | |
| :param dim: the dimension of the output. | |
| :param max_period: controls the minimum frequency of the embeddings. | |
| :return: an (N, D) Tensor of positional embeddings. | |
| """ | |
| # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
| half = dim // 2 | |
| freqs = torch.exp( | |
| -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
| ).to(device=t.device) | |
| args = t[:, None].float() * freqs[None] | |
| embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
| if dim % 2: | |
| embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
| return embedding | |
| def forward(self, t): | |
| t = t.view(-1) | |
| t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
| t_emb = self.mlp(t_freq) | |
| return t_emb | |
| class ConditionEmbedder(nn.Module): | |
| def __init__(self, input_size, hidden_size, dropout_prob, max_weight=1.0, sigma_factor=0.25): | |
| super().__init__() | |
| self.embedding_drop = nn.Embedding(input_size, hidden_size) | |
| self.mlps = nn.ModuleList([ | |
| nn.Sequential( | |
| nn.Linear(1, hidden_size, bias=True), | |
| nn.Softmax(dim=1), | |
| nn.Linear(hidden_size, hidden_size, bias=False) | |
| ) for _ in range(input_size) | |
| ]) | |
| self.hidden_size = hidden_size | |
| self.dropout_prob = dropout_prob | |
| def forward(self, labels, train, unconditioned): | |
| embeddings = 0 | |
| for dim in range(labels.shape[1]): | |
| label = labels[:, dim] | |
| if unconditioned: | |
| drop_ids = torch.ones_like(label).bool() | |
| else: | |
| drop_ids = torch.isnan(label) | |
| if train: | |
| random_tensor = torch.rand(label.shape).type_as(labels) | |
| probability_mask = random_tensor < self.dropout_prob | |
| drop_ids = drop_ids | probability_mask | |
| label = label.unsqueeze(1) | |
| embedding = torch.zeros((label.shape[0], self.hidden_size)).type_as(labels) | |
| mlp_out = self.mlps[dim](label[~drop_ids]) | |
| embedding[~drop_ids] = mlp_out.type_as(embedding) | |
| embedding[drop_ids] += self.embedding_drop.weight[dim] | |
| embeddings += embedding | |
| return embeddings |