Spaces:
Runtime error
Runtime error
| # Copyright 2024 the Llamole team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import numpy as np | |
| from torch.nn import functional as F | |
| from torch_geometric.utils import to_dense_adj, to_dense_batch, remove_self_loops | |
| import os | |
| import json | |
| import yaml | |
| from types import SimpleNamespace | |
| def dict_to_namespace(d): | |
| return SimpleNamespace( | |
| **{k: dict_to_namespace(v) if isinstance(v, dict) else v for k, v in d.items()} | |
| ) | |
| class DataInfos: | |
| def __init__(self, meta_filename="data.meta.json"): | |
| self.all_targets = ['CH4', 'CO2', 'H2', 'N2', 'O2'] | |
| self.task_type = "gas_permeability" | |
| if os.path.exists(meta_filename): | |
| with open(meta_filename, "r") as f: | |
| meta_dict = json.load(f) | |
| else: | |
| raise FileNotFoundError(f"Meta file {meta_filename} not found.") | |
| self.active_atoms = meta_dict["active_atoms"] | |
| self.max_n_nodes = meta_dict["max_node"] | |
| self.original_max_n_nodes = meta_dict["max_node"] | |
| self.n_nodes = torch.Tensor(meta_dict["n_atoms_per_mol_dist"]) | |
| self.edge_types = torch.Tensor(meta_dict["bond_type_dist"]) | |
| self.transition_E = torch.Tensor(meta_dict["transition_E"]) | |
| self.atom_decoder = meta_dict["active_atoms"] | |
| node_types = torch.Tensor(meta_dict["atom_type_dist"]) | |
| active_index = (node_types > 0).nonzero().squeeze() | |
| self.node_types = torch.Tensor(meta_dict["atom_type_dist"])[active_index] | |
| self.nodes_dist = DistributionNodes(self.n_nodes) | |
| self.active_index = active_index | |
| val_len = 3 * self.original_max_n_nodes - 2 | |
| meta_val = torch.Tensor(meta_dict["valencies"]) | |
| self.valency_distribution = torch.zeros(val_len) | |
| val_len = min(val_len, len(meta_val)) | |
| self.valency_distribution[:val_len] = meta_val[:val_len] | |
| ## for all | |
| self.input_dims = {"X": len(self.active_atoms), "E": 5, "y": 5} | |
| self.output_dims = {"X": len(self.active_atoms), "E": 5, "y": 5} | |
| # self.input_dims = {"X": 11, "E": 5, "y": 5} | |
| # self.output_dims = {"X": 11, "E": 5, "y": 5} | |
| def load_config(config_path, data_meta_info_path): | |
| if not os.path.exists(config_path): | |
| raise FileNotFoundError(f"Configuration file not found: {config_path}") | |
| if not os.path.exists(data_meta_info_path): | |
| raise FileNotFoundError(f"Data meta info file not found: {data_meta_info_path}") | |
| with open(config_path, "r") as file: | |
| cfg_dict = yaml.safe_load(file) | |
| cfg = dict_to_namespace(cfg_dict) | |
| data_info = DataInfos(data_meta_info_path) | |
| return cfg, data_info | |
| #### graph utils | |
| class PlaceHolder: | |
| def __init__(self, X, E, y): | |
| self.X = X | |
| self.E = E | |
| self.y = y | |
| def type_as(self, x: torch.Tensor, categorical: bool = False): | |
| """Changes the device and dtype of X, E, y.""" | |
| self.X = self.X.type_as(x) | |
| self.E = self.E.type_as(x) | |
| if categorical: | |
| self.y = self.y.type_as(x) | |
| return self | |
| def mask(self, node_mask, collapse=False): | |
| x_mask = node_mask.unsqueeze(-1) # bs, n, 1 | |
| e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1 | |
| e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1 | |
| if collapse: | |
| self.X = torch.argmax(self.X, dim=-1) | |
| self.E = torch.argmax(self.E, dim=-1) | |
| self.X[node_mask == 0] = -1 | |
| self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = -1 | |
| else: | |
| self.X = self.X * x_mask | |
| self.E = self.E * e_mask1 * e_mask2 | |
| assert torch.allclose(self.E, torch.transpose(self.E, 1, 2)) | |
| return self | |
| def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None): | |
| X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes) | |
| # node_mask = node_mask.float() | |
| edge_index, edge_attr = remove_self_loops(edge_index, edge_attr) | |
| if max_num_nodes is None: | |
| max_num_nodes = X.size(1) | |
| E = to_dense_adj( | |
| edge_index=edge_index, | |
| batch=batch, | |
| edge_attr=edge_attr, | |
| max_num_nodes=max_num_nodes, | |
| ) | |
| E = encode_no_edge(E) | |
| return PlaceHolder(X=X, E=E, y=None), node_mask | |
| def encode_no_edge(E): | |
| assert len(E.shape) == 4 | |
| if E.shape[-1] == 0: | |
| return E | |
| no_edge = torch.sum(E, dim=3) == 0 | |
| first_elt = E[:, :, :, 0] | |
| first_elt[no_edge] = 1 | |
| E[:, :, :, 0] = first_elt | |
| diag = ( | |
| torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1) | |
| ) | |
| E[diag] = 0 | |
| return E | |
| #### diffusion utils | |
| class DistributionNodes: | |
| def __init__(self, histogram): | |
| """Compute the distribution of the number of nodes in the dataset, and sample from this distribution. | |
| historgram: dict. The keys are num_nodes, the values are counts | |
| """ | |
| if type(histogram) == dict: | |
| max_n_nodes = max(histogram.keys()) | |
| prob = torch.zeros(max_n_nodes + 1) | |
| for num_nodes, count in histogram.items(): | |
| prob[num_nodes] = count | |
| else: | |
| prob = histogram | |
| self.prob = prob / prob.sum() | |
| self.m = torch.distributions.Categorical(prob) | |
| def sample_n(self, n_samples, device): | |
| idx = self.m.sample((n_samples,)) | |
| return idx.to(device) | |
| def log_prob(self, batch_n_nodes): | |
| assert len(batch_n_nodes.size()) == 1 | |
| p = self.prob.to(batch_n_nodes.device) | |
| probas = p[batch_n_nodes] | |
| log_p = torch.log(probas + 1e-30) | |
| return log_p | |
| class PredefinedNoiseScheduleDiscrete(torch.nn.Module): | |
| def __init__(self, noise_schedule, timesteps): | |
| super(PredefinedNoiseScheduleDiscrete, self).__init__() | |
| self.timesteps = timesteps | |
| betas = cosine_beta_schedule_discrete(timesteps) | |
| self.register_buffer("betas", torch.from_numpy(betas).float()) | |
| # 0.9999 | |
| self.alphas = 1 - torch.clamp(self.betas, min=0, max=1) | |
| log_alpha = torch.log(self.alphas) | |
| log_alpha_bar = torch.cumsum(log_alpha, dim=0) | |
| self.alphas_bar = torch.exp(log_alpha_bar) | |
| def forward(self, t_normalized=None, t_int=None): | |
| assert int(t_normalized is None) + int(t_int is None) == 1 | |
| if t_int is None: | |
| t_int = torch.round(t_normalized * self.timesteps) | |
| self.betas = self.betas.type_as(t_int) | |
| return self.betas[t_int.long()] | |
| def get_alpha_bar(self, t_normalized=None, t_int=None): | |
| assert int(t_normalized is None) + int(t_int is None) == 1 | |
| if t_int is None: | |
| t_int = torch.round(t_normalized * self.timesteps) | |
| self.alphas_bar = self.alphas_bar.type_as(t_int) | |
| return self.alphas_bar[t_int.long()] | |
| class DiscreteUniformTransition: | |
| def __init__(self, x_classes: int, e_classes: int, y_classes: int): | |
| self.X_classes = x_classes | |
| self.E_classes = e_classes | |
| self.y_classes = y_classes | |
| self.u_x = torch.ones(1, self.X_classes, self.X_classes) | |
| if self.X_classes > 0: | |
| self.u_x = self.u_x / self.X_classes | |
| self.u_e = torch.ones(1, self.E_classes, self.E_classes) | |
| if self.E_classes > 0: | |
| self.u_e = self.u_e / self.E_classes | |
| self.u_y = torch.ones(1, self.y_classes, self.y_classes) | |
| if self.y_classes > 0: | |
| self.u_y = self.u_y / self.y_classes | |
| def get_Qt(self, beta_t, device, X=None, flatten_e=None): | |
| """Returns one-step transition matrices for X and E, from step t - 1 to step t. | |
| Qt = (1 - beta_t) * I + beta_t / K | |
| beta_t: (bs) noise level between 0 and 1 | |
| returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy). | |
| """ | |
| beta_t = beta_t.unsqueeze(1) | |
| beta_t = beta_t.to(device) | |
| self.u_x = self.u_x.to(device) | |
| self.u_e = self.u_e.to(device) | |
| self.u_y = self.u_y.to(device) | |
| q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye( | |
| self.X_classes, device=device | |
| ).unsqueeze(0) | |
| q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye( | |
| self.E_classes, device=device | |
| ).unsqueeze(0) | |
| q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye( | |
| self.y_classes, device=device | |
| ).unsqueeze(0) | |
| return PlaceHolder(X=q_x, E=q_e, y=q_y) | |
| def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None): | |
| """Returns t-step transition matrices for X and E, from step 0 to step t. | |
| Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K | |
| alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t. | |
| returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy). | |
| """ | |
| alpha_bar_t = alpha_bar_t.unsqueeze(1) | |
| alpha_bar_t = alpha_bar_t.to(device) | |
| self.u_x = self.u_x.to(device) | |
| self.u_e = self.u_e.to(device) | |
| self.u_y = self.u_y.to(device) | |
| q_x = ( | |
| alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0) | |
| + (1 - alpha_bar_t) * self.u_x | |
| ) | |
| q_e = ( | |
| alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0) | |
| + (1 - alpha_bar_t) * self.u_e | |
| ) | |
| q_y = ( | |
| alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0) | |
| + (1 - alpha_bar_t) * self.u_y | |
| ) | |
| return PlaceHolder(X=q_x, E=q_e, y=q_y) | |
| class MarginalTransition: | |
| def __init__( | |
| self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes | |
| ): | |
| self.X_classes = len(x_marginals) | |
| self.E_classes = len(e_marginals) | |
| self.y_classes = y_classes | |
| self.x_marginals = x_marginals # Dx | |
| self.e_marginals = e_marginals # Dx, De | |
| self.xe_conditions = xe_conditions | |
| # print('e_marginals.dtype', e_marginals.dtype) | |
| # print('x_marginals.dtype', x_marginals.dtype) | |
| # print('xe_conditions.dtype', xe_conditions.dtype) | |
| self.u_x = ( | |
| x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0) | |
| ) # 1, Dx, Dx | |
| self.u_e = ( | |
| e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0) | |
| ) # 1, De, De | |
| self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De | |
| self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx | |
| self.u = self.get_union_transition( | |
| self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes | |
| ) # 1, Dx + n*De, Dx + n*De | |
| def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes): | |
| u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de) | |
| u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de) | |
| u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx) | |
| u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de) | |
| u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de) | |
| u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de) | |
| return u | |
| def index_edge_margin(self, X, q_e, n_bond=5): | |
| # q_e: (bs, dx, de) --> (bs, n, de) | |
| bs, n, n_atom = X.shape | |
| node_indices = X.argmax(-1) # (bs, n) | |
| ind = node_indices[:, :, None].expand(bs, n, n_bond) | |
| q_e = torch.gather(q_e, 1, ind) | |
| return q_e | |
| def get_Qt(self, beta_t, device): | |
| """Returns one-step transition matrices for X and E, from step t - 1 to step t. | |
| Qt = (1 - beta_t) * I + beta_t / K | |
| beta_t: (bs) | |
| returns: q (bs, d0, d0) | |
| """ | |
| bs = beta_t.size(0) | |
| d0 = self.u.size(-1) | |
| self.u = self.u.to(device) | |
| u = self.u.expand(bs, d0, d0) | |
| beta_t = beta_t.to(device) | |
| beta_t = beta_t.view(bs, 1, 1) | |
| q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0) | |
| return PlaceHolder(X=q, E=None, y=None) | |
| def get_Qt_bar(self, alpha_bar_t, device): | |
| """Returns t-step transition matrices for X and E, from step 0 to step t. | |
| Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K | |
| alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t. | |
| returns: q (bs, d0, d0) | |
| """ | |
| bs = alpha_bar_t.size(0) | |
| d0 = self.u.size(-1) | |
| alpha_bar_t = alpha_bar_t.to(device) | |
| alpha_bar_t = alpha_bar_t.view(bs, 1, 1) | |
| self.u = self.u.to(device) | |
| q = ( | |
| alpha_bar_t * torch.eye(d0, device=device, dtype=self.u.dtype).unsqueeze(0) | |
| + (1 - alpha_bar_t) * self.u | |
| ) | |
| return PlaceHolder(X=q, E=None, y=None) | |
| def sum_except_batch(x): | |
| return x.reshape(x.size(0), -1).sum(dim=-1) | |
| def assert_correctly_masked(variable, node_mask): | |
| assert ( | |
| variable * (1 - node_mask.long()) | |
| ).abs().max().item() < 1e-4, "Variables not masked properly." | |
| def cosine_beta_schedule_discrete(timesteps, s=0.008): | |
| """Cosine schedule as proposed in https://openreview.net/forum?id=-NEXDKk8gZ.""" | |
| steps = timesteps + 2 | |
| x = np.linspace(0, steps, steps) | |
| alphas_cumprod = np.cos(0.5 * np.pi * ((x / steps) + s) / (1 + s)) ** 2 | |
| alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
| alphas = alphas_cumprod[1:] / alphas_cumprod[:-1] | |
| betas = 1 - alphas | |
| return betas.squeeze() | |
| def sample_discrete_features(probX, probE, node_mask, step=None, add_nose=True): | |
| """Sample features from multinomial distribution with given probabilities (probX, probE, proby) | |
| :param probX: bs, n, dx_out node features | |
| :param probE: bs, n, n, de_out edge features | |
| :param proby: bs, dy_out global features. | |
| """ | |
| bs, n, _ = probX.shape | |
| # Noise X | |
| # The masked rows should define probability distributions as well | |
| probX[~node_mask] = 1 / probX.shape[-1] | |
| # Flatten the probability tensor to sample with multinomial | |
| probX = probX.reshape(bs * n, -1) # (bs * n, dx_out) | |
| # Sample X | |
| probX = probX.clamp_min(1e-5) | |
| probX = probX / probX.sum(dim=-1, keepdim=True) | |
| X_t = probX.multinomial(1) # (bs * n, 1) | |
| X_t = X_t.reshape(bs, n) # (bs, n) | |
| # Noise E | |
| # The masked rows should define probability distributions as well | |
| inverse_edge_mask = ~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2)) | |
| diag_mask = torch.eye(n).unsqueeze(0).expand(bs, -1, -1) | |
| probE[inverse_edge_mask] = 1 / probE.shape[-1] | |
| probE[diag_mask.bool()] = 1 / probE.shape[-1] | |
| probE = probE.reshape(bs * n * n, -1) # (bs * n * n, de_out) | |
| probE = probE.clamp_min(1e-5) | |
| probE = probE / probE.sum(dim=-1, keepdim=True) | |
| # Sample E | |
| E_t = probE.multinomial(1).reshape(bs, n, n) # (bs, n, n) | |
| E_t = torch.triu(E_t, diagonal=1) | |
| E_t = E_t + torch.transpose(E_t, 1, 2) | |
| return PlaceHolder(X=X_t, E=E_t, y=torch.zeros(bs, 0).type_as(X_t)) | |
| def mask_distributions(true_X, true_E, pred_X, pred_E, node_mask): | |
| # Add a small value everywhere to avoid nans | |
| pred_X = pred_X.clamp_min(1e-5) | |
| pred_X = pred_X / torch.sum(pred_X, dim=-1, keepdim=True) | |
| pred_E = pred_E.clamp_min(1e-5) | |
| pred_E = pred_E / torch.sum(pred_E, dim=-1, keepdim=True) | |
| # Set masked rows to arbitrary distributions, so it doesn't contribute to loss | |
| row_X = torch.ones(true_X.size(-1), dtype=true_X.dtype, device=true_X.device) | |
| row_E = torch.zeros( | |
| true_E.size(-1), dtype=true_E.dtype, device=true_E.device | |
| ).clamp_min(1e-5) | |
| row_E[0] = 1.0 | |
| diag_mask = ~torch.eye( | |
| node_mask.size(1), device=node_mask.device, dtype=torch.bool | |
| ).unsqueeze(0) | |
| true_X[~node_mask] = row_X | |
| true_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = row_E | |
| pred_X[~node_mask] = row_X.type_as(pred_X) | |
| pred_E[~(node_mask.unsqueeze(1) * node_mask.unsqueeze(2) * diag_mask), :] = ( | |
| row_E.type_as(pred_E) | |
| ) | |
| return true_X, true_E, pred_X, pred_E | |
| def forward_diffusion(X, X_t, Qt, Qsb, Qtb, X_dim): | |
| bs, n, d = X.shape | |
| Qt_X_T = torch.transpose(Qt.X, -2, -1) # (bs, d, d) | |
| left_term = X_t @ Qt_X_T # (bs, N, d) | |
| right_term = X @ Qsb.X # (bs, N, d) | |
| numerator = left_term * right_term # (bs, N, d) | |
| denominator = X @ Qtb.X # (bs, N, d) @ (bs, d, d) = (bs, N, d) | |
| denominator = denominator * X_t | |
| num_X = numerator[:, :, :X_dim] | |
| num_E = numerator[:, :, X_dim:].reshape(bs, n * n, -1) | |
| deno_X = denominator[:, :, :X_dim] | |
| deno_E = denominator[:, :, X_dim:].reshape(bs, n * n, -1) | |
| denominator = denominator.unsqueeze(-1) # (bs, N, 1) | |
| deno_X = deno_X.sum(dim=-1, keepdim=True) | |
| deno_E = deno_E.sum(dim=-1, keepdim=True) | |
| deno_X[deno_X == 0.0] = 1 | |
| deno_E[deno_E == 0.0] = 1 | |
| prob_X = num_X / deno_X | |
| prob_E = num_E / deno_E | |
| prob_E = prob_E / prob_E.sum(dim=-1, keepdim=True) | |
| prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True) | |
| return PlaceHolder(X=prob_X, E=prob_E, y=None) | |
| def reverse_diffusion(predX_0, X_t, Qt, Qsb, Qtb): | |
| """M: X or E | |
| Compute xt @ Qt.T * x0 @ Qsb / x0 @ Qtb @ xt.T for each possible value of x0 | |
| X_t: bs, n, dt or bs, n, n, dt | |
| Qt: bs, d_t-1, dt | |
| Qsb: bs, d0, d_t-1 | |
| Qtb: bs, d0, dt. | |
| """ | |
| Qt_T = Qt.transpose(-1, -2) # bs, N, dt | |
| assert Qt.dim() == 3 | |
| left_term = X_t @ Qt_T # bs, N, d_t-1 | |
| right_term = predX_0 @ Qsb | |
| numerator = left_term * right_term # bs, N, d_t-1 | |
| denominator = Qtb @ X_t.transpose(-1, -2) # bs, d0, N | |
| denominator = denominator.transpose(-1, -2) # bs, N, d0 | |
| return numerator / denominator.clamp_min(1e-5) | |
| def reverse_tensor(x): | |
| return x[torch.arange(x.size(0) - 1, -1, -1)] | |
| def sample_discrete_feature_noise(limit_dist, node_mask): | |
| """Sample from the limit distribution of the diffusion process""" | |
| bs, n_max = node_mask.shape | |
| x_limit = limit_dist.X[None, None, :].expand(bs, n_max, -1) | |
| x_limit = x_limit.to(node_mask.device) | |
| U_X = x_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max) | |
| U_X = F.one_hot(U_X.long(), num_classes=x_limit.shape[-1]).type_as(x_limit) | |
| e_limit = limit_dist.E[None, None, None, :].expand(bs, n_max, n_max, -1) | |
| U_E = e_limit.flatten(end_dim=-2).multinomial(1).reshape(bs, n_max, n_max) | |
| U_E = F.one_hot(U_E.long(), num_classes=e_limit.shape[-1]).type_as(x_limit) | |
| U_X = U_X.to(node_mask.device) | |
| U_E = U_E.to(node_mask.device) | |
| # Get upper triangular part of edge noise, without main diagonal | |
| upper_triangular_mask = torch.zeros_like(U_E) | |
| indices = torch.triu_indices(row=U_E.size(1), col=U_E.size(2), offset=1) | |
| upper_triangular_mask[:, indices[0], indices[1], :] = 1 | |
| U_E = U_E * upper_triangular_mask | |
| U_E = U_E + torch.transpose(U_E, 1, 2) | |
| assert (U_E == torch.transpose(U_E, 1, 2)).all() | |
| return PlaceHolder(X=U_X, E=U_E, y=None).mask(node_mask) | |
| def index_QE(X, q_e, n_bond=5): | |
| bs, n, n_atom = X.shape | |
| node_indices = X.argmax(-1) # (bs, n) | |
| exp_ind1 = node_indices[:, :, None, None, None].expand( | |
| bs, n, n_atom, n_bond, n_bond | |
| ) | |
| exp_ind2 = node_indices[:, :, None, None, None].expand(bs, n, n, n_bond, n_bond) | |
| q_e = torch.gather(q_e, 1, exp_ind1) | |
| q_e = torch.gather(q_e, 2, exp_ind2) # (bs, n, n, n_bond, n_bond) | |
| node_mask = X.sum(-1) != 0 | |
| no_edge = (~node_mask)[:, :, None] & (~node_mask)[:, None, :] | |
| q_e[no_edge] = torch.tensor([1, 0, 0, 0, 0]).type_as(q_e) | |
| return q_e | |