Spaces:
Runtime error
Runtime error
Commit
Β·
5d92357
1
Parent(s):
5afe135
Demo
Browse files- app.py +60 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import transformers
|
| 4 |
+
|
| 5 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
| 6 |
+
|
| 7 |
+
class Interactive:
|
| 8 |
+
def __init__(self):
|
| 9 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained('liujch1998/cd-pi')
|
| 10 |
+
self.model = transformers.AutoModelForSeq2SeqLM.from_pretrained('liujch1998/cd-pi').to(device)
|
| 11 |
+
self.linear = torch.nn.Linear(self.model.shared.embedding_dim, 1).to(device)
|
| 12 |
+
self.linear.weight = torch.nn.Parameter(self.model.shared.weight[32099, :].unsqueeze(0)) # (1, D)
|
| 13 |
+
self.linear.bias = torch.nn.Parameter(self.model.shared.weight[32098, 0].unsqueeze(0)) # (1)
|
| 14 |
+
self.model.eval()
|
| 15 |
+
self.t = 2.2247
|
| 16 |
+
|
| 17 |
+
def run(self, statement):
|
| 18 |
+
input_ids = self.tokenizer.batch_encode_plus([statement], return_tensors='pt', padding='longest').input_ids.to(device)
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
output = self.model(input_ids)
|
| 21 |
+
last_hidden_state = output.last_hidden_state.to(device) # (B=1, L, D)
|
| 22 |
+
hidden = last_hidden_state[0, -1, :] # (D)
|
| 23 |
+
logit = self.linear(hidden).squeeze(-1) # ()
|
| 24 |
+
logit_calibrated = logit / self.t
|
| 25 |
+
score = logit.sigmoid()
|
| 26 |
+
score_calibrated = logit_calibrated.sigmoid()
|
| 27 |
+
return {
|
| 28 |
+
'logit': logit.item(),
|
| 29 |
+
'logit_calibrated': logit_calibrated.item(),
|
| 30 |
+
'score': score.item(),
|
| 31 |
+
'score_calibrated': score_calibrated.item(),
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
interactive = Interactive()
|
| 35 |
+
|
| 36 |
+
def predict(statement, model):
|
| 37 |
+
result = interactive.run(statement)
|
| 38 |
+
return {
|
| 39 |
+
'True': result['score_calibrated'],
|
| 40 |
+
'False': 1 - result['score_calibrated'],
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
examples = [
|
| 44 |
+
'If A sits next to B and B sits next to C, then A must sit next to C.',
|
| 45 |
+
'If A sits next to B and B sits next to C, then A might not sit next to C.',
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
input_statement = gr.Dropdown(choices=examples, label='Statement:')
|
| 49 |
+
input_model = gr.Textbox(label='Commonsense statement verification model:', value='liujch1998/cd-pi', interactive=False)
|
| 50 |
+
output = gr.outputs.Label(num_top_classes=2)
|
| 51 |
+
|
| 52 |
+
description = '''This is a demo for a commonsense statement verification model. Under development.'''
|
| 53 |
+
|
| 54 |
+
gr.Interface(
|
| 55 |
+
fn=predict,
|
| 56 |
+
inputs=[input_statement, input_model],
|
| 57 |
+
outputs=output,
|
| 58 |
+
title="cd-pi Demo",
|
| 59 |
+
description=description,
|
| 60 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
tokenizers
|
| 4 |
+
sentencepiece
|