File size: 14,882 Bytes
372785b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6833c
372785b
5c6833c
372785b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a30c00e
372785b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6833c
372785b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import argparse
import cv2
import cv2
import torch
import gradio as gr
from transformers import SamModel, SamProcessor

import spaces
import numpy as np
from PIL import Image
from tqdm import tqdm
from torchvision.transforms import v2

from rynnec import disable_torch_init, model_init, mm_infer, mm_infer_segmentation
from rynnec.mm_utils import annToMask, load_video, load_images

from PIL import Image
from tqdm import tqdm
import numpy as np
import colorsys
import argparse


def get_hsv_palette(n_colors):
    hues = np.linspace(0, 1, int(n_colors) + 1)[1:-1]
    s = 0.8
    v = 0.9
    palette = [(0.0, 0.0, 0.0)] + [
        colorsys.hsv_to_rgb(h_i, s, v) for h_i in hues
    ]
    return (255 * np.asarray(palette)).astype("uint8")


def colorize_masks(images, index_masks, fac: float = 0.8, draw_contour=True, edge_thickness=20):
    max_idx = max([m.max() for m in index_masks])
    palette = get_hsv_palette(max_idx + 1)
    color_masks = []
    out_frames = []
    for img, mask in tqdm(zip(images, index_masks), desc='Visualize masks ...'):
        clr_mask = palette[mask.astype("int")]
        blended_img = img

        blended_img = compose_img_mask(blended_img, clr_mask, fac)

        if draw_contour:
            blended_img = draw_contours_on_image(blended_img, mask, clr_mask,
                                                 brightness_factor=1.8,
                                                 alpha=0.6,
                                                 thickness=edge_thickness)
        out_frames.append(blended_img)

    return out_frames, color_masks


def compose_img_mask(img, color_mask, fac: float = 0.5):
    mask_region = (color_mask.sum(axis=-1) > 0)[..., None]
    out_f = img.copy() / 255
    out_f[mask_region[:, :, 0]] = fac * img[mask_region[:, :, 0]] / 255 + (1 - fac) * color_mask[mask_region[:, :, 0]] / 255
    out_u = (255 * out_f).astype("uint8")
    return out_u


def draw_contours_on_image(img, index_mask, color_mask, brightness_factor=1.6, alpha=0.5, thickness=2, ignore_index=0):
    img = img.astype("float32")
    overlay = img.copy()

    unique_indices = np.unique(index_mask)
    if ignore_index is not None:
        unique_indices = [idx for idx in unique_indices if idx != ignore_index]

    for i in unique_indices:
        bin_mask = (index_mask == i).astype("uint8") * 255
        if bin_mask.sum() == 0:
            continue

        contours, _ = cv2.findContours(bin_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        color = color_mask[index_mask == i][0].astype("float32")
        bright_color = np.clip(color * brightness_factor, 0, 255).tolist()

        cv2.drawContours(overlay, contours, -1, bright_color, thickness)

    blended = (1 - alpha) * img + alpha * overlay
    return np.clip(blended, 0, 255).astype("uint8")


def extract_first_frame_from_video(video):
    cap = cv2.VideoCapture(video)
    success, frame = cap.read()
    cap.release()
    if success:
        return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
    return None


def extract_points_from_mask(mask_pil):
    mask = np.asarray(mask_pil)[..., 0]
    coords = np.nonzero(mask)
    coords = np.stack((coords[1], coords[0]), axis=1)

    return coords

def add_contour(img, mask, color=(1., 1., 1.)):
    img = img.copy()

    mask = mask.astype(np.uint8) * 255
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(img, contours, -1, color, thickness=8)

    return img


def load_first_frame(video_path):
    cap = cv2.VideoCapture(video_path)
    ret, frame = cap.read()
    cap.release()
    if not ret:
        raise gr.Error("Could not read the video file.")
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(frame)  
    return image


def clear_masks():
    return [], [], [], []

def clear_all():
    return [], [], [], [], None, "", ""


@spaces.GPU(duration=120)
def apply_sam(image, input_points):
    inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)

    with torch.no_grad():
        outputs = sam_model(**inputs)

    masks = sam_processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())[0][0]
    scores = outputs.iou_scores[0, 0]

    mask_selection_index = scores.argmax()

    mask_np = masks[mask_selection_index].numpy()

    return mask_np


@spaces.GPU(duration=120)
def run(mode, images, timestamps, masks, mask_ids, instruction, mask_output_video):
    if mode == "QA":
        response = run_text_inference(images, timestamps, masks, mask_ids, instruction)
    else:
        response, mask_output_video = run_seg_inference(images, timestamps, instruction)
    return response, mask_output_video


def run_text_inference(images, timestamps, masks, mask_ids, instruction):
    masks = torch.from_numpy(np.stack(masks, axis=0))

    if "<video>" not in instruction:
        instruction = "<video>\n" + instruction

    if len(masks) >= 2:
        obj_str = f"<video>\nThere are {len(masks)} objects in the video: " + ", ".join([f"<object{i}> [<REGION>]" for i in range(len(masks))])
        instruction = instruction.replace("<video>\n", obj_str)
    else:
        instruction = instruction.replace("<object0>", '[<REGION>]')

    output = mm_infer(
        (images, timestamps),
        processor,
        instruction,
        model=model,
        tokenizer=processor.tokenizer,
        do_sample=False,
        modal='video',
        masks=masks.cuda() if masks is not None else None,
        mask_ids=mask_ids
    )

    return output


def run_seg_inference(images, timestamps, instruction):
    output, masks = mm_infer_segmentation(
        (images, timestamps),
        seg_processor,
        instruction,
        model=seg_model,
        tokenizer=processor.tokenizer,
        do_sample=False,
        modal='video',
    )

    w, h = images[0].size
    masks = v2.Resize([h, w])(masks).cpu().numpy()

    mask_list_video = []

    images = [np.array(image) for image in images]
    masks = [mask[0] for mask in masks]
    show_images, _ = colorize_masks(images, masks)
    for i, image in enumerate(show_images):
        if masks[i].sum() > 1000:
            mask_list_video.append((Image.fromarray(image), f"Frame {i}"))        

    return output, mask_list_video


def generate_masks_video(image, mask_list_video, mask_raw_list_video, mask_ids, frame_idx):
    image['image'] = image['background'].convert('RGB')
    # del image['background'], image['composite']
    assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"

    mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
    points = extract_points_from_mask(mask)
    np.random.seed(0)
    if points.shape[0] == 0:
        raise gr.Error("No points selected")

    points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
    points = points[points_selected_indices]
    coords = [points.tolist()]
    mask_np = apply_sam(image['image'], coords)

    mask_raw_list_video.append(mask_np)
    mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(image['image'])).astype(np.uint8))
    
    mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
    # Return a list containing the mask image.
    image['layers'] = []
    image['composite'] = image['background']
    mask_ids.append(frame_idx)
    return mask_list_video, image, mask_list_video, mask_raw_list_video, mask_ids


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="VideoRefer gradio demo")
    parser.add_argument("--model-path", type=str, default="Alibaba-DAMO-Academy/RynnEC-2B", help="Path to the model checkpoint")
    parser.add_argument("--seg-model-path", type=str, default="Alibaba-DAMO-Academy/RynnEC-2B-Cog", help="Path to the model checkpoint")
    parser.add_argument("--port", type=int, default=4001)

    args_cli = parser.parse_args()

    with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:

        mask_list = gr.State([])  
        mask_raw_list = gr.State([])  
        mask_list_video = gr.State([])  
        mask_raw_list_video = gr.State([])  


        HEADER = ("""
            <div>
                <h1>RynnEC Demo</h1>
                <h5 style="margin: 0;">Feel free to click on anything that grabs your interest!</h5>
                <h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
            </div>
            </div>
            <div style="display: flex; justify-content: left; margin-top: 10px;">
            <a href="https://arxiv.org/pdf/2501.00599"><img src="https://img.shields.io/badge/Arxiv-2501.00599-ECA8A7" style="margin-right: 5px;"></a>
            <a href="https://github.com/DAMO-NLP-SG/VideoRefer"><img src='https://img.shields.io/badge/Github-VideoRefer-F7C97E' style="margin-right: 5px;"></a>
            <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9DC3E6' style="margin-right: 5px;"></a>
            </div>
            """)


        image_tips = """
                ### 💡 Tips:

                🧸 Upload an image, and you can use the drawing tool✍️ to highlight the areas you're interested in.
            
                🔖 For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
                
                🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
                
                📌 Click the button 'Clear Masks' to clear the current generated masks.
                
                """
        
        video_tips = """
                ### 💡 Tips:
                🧸 Upload an video, and you can use the drawing tool✍️ to highlight the areas you're interested in the first frame.
                
                🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
                
                📌 Click the button 'Clear Masks' to clear the current generated masks.
                
                """


        with gr.TabItem("Video"):
            with gr.Row():
                with gr.Column():
                    video_input = gr.Video(label="Video", interactive=True)
                    frame_idx = gr.Slider(minimum=0, maximum=0, value=0, step=1, label="Select Frame", interactive=False)
                    selected_frame = gr.ImageEditor(
                        label="Annotate Frame",
                        type="pil", 
                        sources=[], 
                        interactive=True,
                    )
                    generate_mask_btn_video = gr.Button("1️⃣ Generate Mask", visible=True, variant="primary")
                    gr.Examples([f"./demo/videos/{i+1}.mp4" for i in range(4)], inputs=video_input, label="Examples")

                with gr.Column():
                    mode_video = gr.Radio(label="Mode", choices=["QA", "Seg"], value="QA")
                    mask_output_video = gr.Gallery(label="Referred Masks", object_fit='scale-down')

                    query_video = gr.Textbox(label="Question", value="Please describe <object0>.", interactive=True, visible=True)
                    response_video = gr.Textbox(label="Answer", interactive=False)

                    submit_btn_video = gr.Button("Generate Caption", variant="primary", visible=False)
                    submit_btn_video1 = gr.Button("2️⃣ Generate Answer", variant="primary", visible=True)
                    description_video = gr.Textbox(label="Output", visible=False)
                    
                    clear_masks_btn_video = gr.Button("Clear Masks", variant="secondary")

            gr.Markdown(video_tips)

            frames = gr.State(value=[])
            timestamps = gr.State(value=[])
            mask_ids = gr.State(value=[])

        def on_video_upload(video_path):
            frames, timestamps = load_video(video_path, fps=1, max_frames=128)
            frames = [Image.fromarray(x.transpose(1, 2, 0)) for x in frames]
            return frames, timestamps, frames[0], gr.update(value=0, maximum=len(frames) - 1, interactive=True)

        def on_frame_idx_change(frame_idx, frames):
            return frames[frame_idx]

        def to_seg_mode():
            return (
                *[gr.update(visible=False) for _ in range(4)],
                []
            )

        def to_qa_mode():
            return (
                *[gr.update(visible=True) for _ in range(4)],
                []
            )

        def on_mode_change(mode):
            if mode == "QA":
                return to_qa_mode()
            return to_seg_mode()

        mode_video.change(on_mode_change, inputs=[mode_video], outputs=[frame_idx, selected_frame, generate_mask_btn_video, response_video, mask_output_video])
        video_input.change(on_video_upload, inputs=[video_input], outputs=[frames, timestamps, selected_frame, frame_idx])
        frame_idx.change(on_frame_idx_change, inputs=[frame_idx, frames], outputs=[selected_frame])

        generate_mask_btn_video.click(
            fn=generate_masks_video,
            inputs=[selected_frame, mask_list_video, mask_raw_list_video, mask_ids, frame_idx],
            outputs=[mask_output_video, selected_frame, mask_list_video, mask_raw_list_video, mask_ids]
        )

        submit_btn_video1.click(
            fn=run,
            inputs=[mode_video, frames, timestamps, mask_raw_list_video, mask_ids, query_video, mask_output_video],
            outputs=[response_video, mask_output_video],
            api_name="describe_video"
        )

        video_input.clear(
            fn=clear_all,
            outputs=[mask_output_video, mask_list_video, mask_raw_list_video, mask_ids, selected_frame, query_video, response_video]
        )

        clear_masks_btn_video.click(
            fn=clear_masks,
            outputs=[mask_output_video, mask_list_video, mask_raw_list_video, mask_ids]
        )

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
    sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
    # sam_model = sam_processor = None
    disable_torch_init()
    model, processor = model_init(args_cli.model_path)
    seg_model, seg_processor = model_init(args_cli.seg_model_path)
    # model = processor = None

    # demo.launch()
    demo.launch(
        share=False,
    )