Spaces:
Runtime error
Runtime error
File size: 14,882 Bytes
372785b 5c6833c 372785b 5c6833c 372785b a30c00e 372785b 5c6833c 372785b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import argparse
import cv2
import cv2
import torch
import gradio as gr
from transformers import SamModel, SamProcessor
import spaces
import numpy as np
from PIL import Image
from tqdm import tqdm
from torchvision.transforms import v2
from rynnec import disable_torch_init, model_init, mm_infer, mm_infer_segmentation
from rynnec.mm_utils import annToMask, load_video, load_images
from PIL import Image
from tqdm import tqdm
import numpy as np
import colorsys
import argparse
def get_hsv_palette(n_colors):
hues = np.linspace(0, 1, int(n_colors) + 1)[1:-1]
s = 0.8
v = 0.9
palette = [(0.0, 0.0, 0.0)] + [
colorsys.hsv_to_rgb(h_i, s, v) for h_i in hues
]
return (255 * np.asarray(palette)).astype("uint8")
def colorize_masks(images, index_masks, fac: float = 0.8, draw_contour=True, edge_thickness=20):
max_idx = max([m.max() for m in index_masks])
palette = get_hsv_palette(max_idx + 1)
color_masks = []
out_frames = []
for img, mask in tqdm(zip(images, index_masks), desc='Visualize masks ...'):
clr_mask = palette[mask.astype("int")]
blended_img = img
blended_img = compose_img_mask(blended_img, clr_mask, fac)
if draw_contour:
blended_img = draw_contours_on_image(blended_img, mask, clr_mask,
brightness_factor=1.8,
alpha=0.6,
thickness=edge_thickness)
out_frames.append(blended_img)
return out_frames, color_masks
def compose_img_mask(img, color_mask, fac: float = 0.5):
mask_region = (color_mask.sum(axis=-1) > 0)[..., None]
out_f = img.copy() / 255
out_f[mask_region[:, :, 0]] = fac * img[mask_region[:, :, 0]] / 255 + (1 - fac) * color_mask[mask_region[:, :, 0]] / 255
out_u = (255 * out_f).astype("uint8")
return out_u
def draw_contours_on_image(img, index_mask, color_mask, brightness_factor=1.6, alpha=0.5, thickness=2, ignore_index=0):
img = img.astype("float32")
overlay = img.copy()
unique_indices = np.unique(index_mask)
if ignore_index is not None:
unique_indices = [idx for idx in unique_indices if idx != ignore_index]
for i in unique_indices:
bin_mask = (index_mask == i).astype("uint8") * 255
if bin_mask.sum() == 0:
continue
contours, _ = cv2.findContours(bin_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
color = color_mask[index_mask == i][0].astype("float32")
bright_color = np.clip(color * brightness_factor, 0, 255).tolist()
cv2.drawContours(overlay, contours, -1, bright_color, thickness)
blended = (1 - alpha) * img + alpha * overlay
return np.clip(blended, 0, 255).astype("uint8")
def extract_first_frame_from_video(video):
cap = cv2.VideoCapture(video)
success, frame = cap.read()
cap.release()
if success:
return Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
return None
def extract_points_from_mask(mask_pil):
mask = np.asarray(mask_pil)[..., 0]
coords = np.nonzero(mask)
coords = np.stack((coords[1], coords[0]), axis=1)
return coords
def add_contour(img, mask, color=(1., 1., 1.)):
img = img.copy()
mask = mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, color, thickness=8)
return img
def load_first_frame(video_path):
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
cap.release()
if not ret:
raise gr.Error("Could not read the video file.")
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
return image
def clear_masks():
return [], [], [], []
def clear_all():
return [], [], [], [], None, "", ""
@spaces.GPU(duration=120)
def apply_sam(image, input_points):
inputs = sam_processor(image, input_points=input_points, return_tensors="pt").to(device)
with torch.no_grad():
outputs = sam_model(**inputs)
masks = sam_processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())[0][0]
scores = outputs.iou_scores[0, 0]
mask_selection_index = scores.argmax()
mask_np = masks[mask_selection_index].numpy()
return mask_np
@spaces.GPU(duration=120)
def run(mode, images, timestamps, masks, mask_ids, instruction, mask_output_video):
if mode == "QA":
response = run_text_inference(images, timestamps, masks, mask_ids, instruction)
else:
response, mask_output_video = run_seg_inference(images, timestamps, instruction)
return response, mask_output_video
def run_text_inference(images, timestamps, masks, mask_ids, instruction):
masks = torch.from_numpy(np.stack(masks, axis=0))
if "<video>" not in instruction:
instruction = "<video>\n" + instruction
if len(masks) >= 2:
obj_str = f"<video>\nThere are {len(masks)} objects in the video: " + ", ".join([f"<object{i}> [<REGION>]" for i in range(len(masks))])
instruction = instruction.replace("<video>\n", obj_str)
else:
instruction = instruction.replace("<object0>", '[<REGION>]')
output = mm_infer(
(images, timestamps),
processor,
instruction,
model=model,
tokenizer=processor.tokenizer,
do_sample=False,
modal='video',
masks=masks.cuda() if masks is not None else None,
mask_ids=mask_ids
)
return output
def run_seg_inference(images, timestamps, instruction):
output, masks = mm_infer_segmentation(
(images, timestamps),
seg_processor,
instruction,
model=seg_model,
tokenizer=processor.tokenizer,
do_sample=False,
modal='video',
)
w, h = images[0].size
masks = v2.Resize([h, w])(masks).cpu().numpy()
mask_list_video = []
images = [np.array(image) for image in images]
masks = [mask[0] for mask in masks]
show_images, _ = colorize_masks(images, masks)
for i, image in enumerate(show_images):
if masks[i].sum() > 1000:
mask_list_video.append((Image.fromarray(image), f"Frame {i}"))
return output, mask_list_video
def generate_masks_video(image, mask_list_video, mask_raw_list_video, mask_ids, frame_idx):
image['image'] = image['background'].convert('RGB')
# del image['background'], image['composite']
assert len(image['layers']) == 1, f"Expected 1 layer, got {len(image['layers'])}"
mask = Image.fromarray((np.asarray(image['layers'][0])[..., 3] > 0).astype(np.uint8) * 255).convert('RGB')
points = extract_points_from_mask(mask)
np.random.seed(0)
if points.shape[0] == 0:
raise gr.Error("No points selected")
points_selected_indices = np.random.choice(points.shape[0], size=min(points.shape[0], 8), replace=False)
points = points[points_selected_indices]
coords = [points.tolist()]
mask_np = apply_sam(image['image'], coords)
mask_raw_list_video.append(mask_np)
mask_image = Image.fromarray((mask_np[:,:,np.newaxis] * np.array(image['image'])).astype(np.uint8))
mask_list_video.append((mask_image, f"<object{len(mask_list_video)}>"))
# Return a list containing the mask image.
image['layers'] = []
image['composite'] = image['background']
mask_ids.append(frame_idx)
return mask_list_video, image, mask_list_video, mask_raw_list_video, mask_ids
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="VideoRefer gradio demo")
parser.add_argument("--model-path", type=str, default="Alibaba-DAMO-Academy/RynnEC-2B", help="Path to the model checkpoint")
parser.add_argument("--seg-model-path", type=str, default="Alibaba-DAMO-Academy/RynnEC-2B-Cog", help="Path to the model checkpoint")
parser.add_argument("--port", type=int, default=4001)
args_cli = parser.parse_args()
with gr.Blocks(theme=gr.themes.Soft(primary_hue="amber")) as demo:
mask_list = gr.State([])
mask_raw_list = gr.State([])
mask_list_video = gr.State([])
mask_raw_list_video = gr.State([])
HEADER = ("""
<div>
<h1>RynnEC Demo</h1>
<h5 style="margin: 0;">Feel free to click on anything that grabs your interest!</h5>
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
</div>
</div>
<div style="display: flex; justify-content: left; margin-top: 10px;">
<a href="https://arxiv.org/pdf/2501.00599"><img src="https://img.shields.io/badge/Arxiv-2501.00599-ECA8A7" style="margin-right: 5px;"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoRefer"><img src='https://img.shields.io/badge/Github-VideoRefer-F7C97E' style="margin-right: 5px;"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9DC3E6' style="margin-right: 5px;"></a>
</div>
""")
image_tips = """
### 💡 Tips:
🧸 Upload an image, and you can use the drawing tool✍️ to highlight the areas you're interested in.
🔖 For single-object caption mode, simply select the area and click the 'Generate Caption' button to receive a caption for the object.
🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
📌 Click the button 'Clear Masks' to clear the current generated masks.
"""
video_tips = """
### 💡 Tips:
🧸 Upload an video, and you can use the drawing tool✍️ to highlight the areas you're interested in the first frame.
🔔 In QA mode, you can generate multiple masks by clicking the 'Generate Mask' button multiple times. Afterward, use the corresponding object id to ask questions.
📌 Click the button 'Clear Masks' to clear the current generated masks.
"""
with gr.TabItem("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video", interactive=True)
frame_idx = gr.Slider(minimum=0, maximum=0, value=0, step=1, label="Select Frame", interactive=False)
selected_frame = gr.ImageEditor(
label="Annotate Frame",
type="pil",
sources=[],
interactive=True,
)
generate_mask_btn_video = gr.Button("1️⃣ Generate Mask", visible=True, variant="primary")
gr.Examples([f"./demo/videos/{i+1}.mp4" for i in range(4)], inputs=video_input, label="Examples")
with gr.Column():
mode_video = gr.Radio(label="Mode", choices=["QA", "Seg"], value="QA")
mask_output_video = gr.Gallery(label="Referred Masks", object_fit='scale-down')
query_video = gr.Textbox(label="Question", value="Please describe <object0>.", interactive=True, visible=True)
response_video = gr.Textbox(label="Answer", interactive=False)
submit_btn_video = gr.Button("Generate Caption", variant="primary", visible=False)
submit_btn_video1 = gr.Button("2️⃣ Generate Answer", variant="primary", visible=True)
description_video = gr.Textbox(label="Output", visible=False)
clear_masks_btn_video = gr.Button("Clear Masks", variant="secondary")
gr.Markdown(video_tips)
frames = gr.State(value=[])
timestamps = gr.State(value=[])
mask_ids = gr.State(value=[])
def on_video_upload(video_path):
frames, timestamps = load_video(video_path, fps=1, max_frames=128)
frames = [Image.fromarray(x.transpose(1, 2, 0)) for x in frames]
return frames, timestamps, frames[0], gr.update(value=0, maximum=len(frames) - 1, interactive=True)
def on_frame_idx_change(frame_idx, frames):
return frames[frame_idx]
def to_seg_mode():
return (
*[gr.update(visible=False) for _ in range(4)],
[]
)
def to_qa_mode():
return (
*[gr.update(visible=True) for _ in range(4)],
[]
)
def on_mode_change(mode):
if mode == "QA":
return to_qa_mode()
return to_seg_mode()
mode_video.change(on_mode_change, inputs=[mode_video], outputs=[frame_idx, selected_frame, generate_mask_btn_video, response_video, mask_output_video])
video_input.change(on_video_upload, inputs=[video_input], outputs=[frames, timestamps, selected_frame, frame_idx])
frame_idx.change(on_frame_idx_change, inputs=[frame_idx, frames], outputs=[selected_frame])
generate_mask_btn_video.click(
fn=generate_masks_video,
inputs=[selected_frame, mask_list_video, mask_raw_list_video, mask_ids, frame_idx],
outputs=[mask_output_video, selected_frame, mask_list_video, mask_raw_list_video, mask_ids]
)
submit_btn_video1.click(
fn=run,
inputs=[mode_video, frames, timestamps, mask_raw_list_video, mask_ids, query_video, mask_output_video],
outputs=[response_video, mask_output_video],
api_name="describe_video"
)
video_input.clear(
fn=clear_all,
outputs=[mask_output_video, mask_list_video, mask_raw_list_video, mask_ids, selected_frame, query_video, response_video]
)
clear_masks_btn_video.click(
fn=clear_masks,
outputs=[mask_output_video, mask_list_video, mask_raw_list_video, mask_ids]
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to(device)
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
# sam_model = sam_processor = None
disable_torch_init()
model, processor = model_init(args_cli.model_path)
seg_model, seg_processor = model_init(args_cli.seg_model_path)
# model = processor = None
# demo.launch()
demo.launch(
share=False,
)
|