Spaces:
Runtime error
Runtime error
File size: 9,521 Bytes
372785b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
import shutil
import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig, AutoProcessor
from .projector import load_mm_projector
from .videollama3_encoder import Videollama3VisionEncoderModel, Videollama3VisionEncoderConfig
from .rynnec_qwen2 import RynnecQwen2ForCausalLM, RynnecQwen2Config, Videollama3Qwen2Processor
def apply_liger_kernel_to_rynnec():
from liger_kernel.transformers import (
apply_liger_kernel_to_mistral,
apply_liger_kernel_to_qwen2,
apply_liger_kernel_to_qwen3,
apply_liger_kernel_to_qwen3_moe,
)
from liger_kernel.transformers.rope import liger_rotary_pos_emb
from liger_kernel.transformers.layer_norm import LigerLayerNorm
from .videollama3_encoder import modeling_videollama3_encoder
apply_liger_kernel_to_mistral()
apply_liger_kernel_to_qwen2()
modeling_videollama3_encoder.apply_rotary_pos_emb_vision = liger_rotary_pos_emb
modeling_videollama3_encoder.LayerNorm = LigerLayerNorm
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", **kwargs):
if 'token' in kwargs:
token = kwargs['token']
else:
token = None
# NOTE: auto device_map by default
# if want to put model into a single device, you can set device_map={"": "cuda:0"}
kwargs = {"device_map": device_map, **kwargs}
config = AutoConfig.from_pretrained(model_path)
config._attn_implementation = kwargs.pop('attn_implementation', "flash_attention_2") # default to flash_attention_2
torch_dtype = config.torch_dtype if hasattr(config, "torch_dtype") else kwargs.pop('torch_dtype', torch.float16)
if load_8bit:
kwargs['load_in_8bit'] = True
elif load_4bit:
# NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
# kwargs['load_in_4bit'] = True
kwargs['quantization_config'] = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
else:
kwargs['torch_dtype'] = torch_dtype
# judge model type
model_type = config.model_type if hasattr(config, "model_type") else kwargs.pop('model_type', "rynnec_qwen2")
# judge pretrain/finetune
is_alignment = getattr(config, "tune_mm_mlp_adapter", False) or getattr(config, "is_alignment", False)
# NOTE: lora/qlora model loading
if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
# if True:
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
# NOTE: remove qlora training quantization config
if hasattr(cfg_pretrained, 'quantization_config'):
del cfg_pretrained.quantization_config
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
print('Loading RynnEC from base model...')
config_raw = AutoConfig.from_pretrained(model_base)
new_vocab_size = config.vocab_size
if config.vocab_size!=config_raw.vocab_size:
config.vocab_size = config_raw.vocab_size
config.training = False
if 'qwen2' in model_base.lower():
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
model.config.mask_decoder_model = "./checkpoints/sam2_hiera_large.pt"
token_num, tokem_dim = new_vocab_size, model.lm_head.in_features
if model.lm_head.weight.shape[0] != token_num:
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
print('Loading additional RynnEC weights...')
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
else:
# this is probably from HF Hub
from huggingface_hub import hf_hub_download
def load_from_hf(repo_id, filename, subfolder=None):
cache_file = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
# add
sam2_model = torch.load(model.config.mask_decoder_model, map_location='cpu')['model']
prefix = "base_model.model.grounding_encoder.sam2_model."
for param_name in sam2_model.keys():
new_param_name = prefix + param_name
if new_param_name not in non_lora_trainables.keys():
non_lora_trainables[new_param_name] = sam2_model[param_name]
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
if any(k.startswith('model.model.') for k in non_lora_trainables):
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
model.load_state_dict(non_lora_trainables, strict=False)
from peft import PeftModel
print('Loading LoRA weights...')
model = PeftModel.from_pretrained(model, model_path)
print('Merging LoRA weights...')
model = model.merge_and_unload()
print('Model is loaded...')
elif model_base is not None or '-base' in model_name.lower() or is_alignment:
# NOTE: Base/Pretrain model loading
print('Loading RynnEC from base model...')
cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
# NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
# cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
model_base = model_base if model_base is not None else cfg_pretrained._name_or_path
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
if model_type in ['rynnec', 'rynnec_qwen2']:
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = RynnecQwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
# NOTE; loading vision-language projector
# * old codes for loading local mm_projector.bin
# mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
# mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
# model.load_state_dict(mm_projector_weights, strict=False)
# * new codes which supports loading mm_projector.bin both offline and online
mm_projector_weights = load_mm_projector(model_path, token=token)
model.load_state_dict(mm_projector_weights, strict=False)
elif 'rynnec' in model_type:
# NOTE: SFT model loading
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)
if model_type in ['rynnec_qwen2']:
model = RynnecQwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
else:
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)
processor = None
# if "videollama" in model_type:
if True:
vision_encoder = model.get_vision_encoder()
processor = vision_encoder.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, processor, context_len
|