File size: 9,918 Bytes
372785b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os

import torch
import torch.nn as nn
from transformers import (CLIPImageProcessor, CLIPVisionConfig,
                          CLIPVisionModel, SiglipImageProcessor,
                          SiglipVisionConfig, SiglipVisionModel)

from .videollama3_encoder import (Videollama3VisionEncoderConfig,
    Videollama3VisionEncoderModel, Videollama3ImageProcessor)


class CLIPVisionEncoder(nn.Module):

    def __init__(self, vision_encoder, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_encoder_name = vision_encoder
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        if not delay_load:
            self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2')
            self.load_model()
        else:
            # uncertain whether flash-attention-2 is supported during inference phase.
            self.attn_implementation = 'sdpa' # 'eager'
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name)

    def load_model(self):
        if self.is_loaded:
            print('Vision tower is already loaded, `load model` call again, skipping.')
            return

        self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_encoder_name)

        self.vision_encoder = CLIPVisionModel.from_pretrained(self.vision_encoder_name,
                                                            attn_implementation=self.attn_implementation)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    def forward(self, images, **kwargs):
        images = torch.cat(images)
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_encoder.dtype

    @property
    def device(self):
        return self.vision_encoder.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_encoder.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2

    @property
    def num_patches_per_side(self):
        return self.config.image_size // self.config.patch_size

    @property
    def image_size(self):
        return self.config.image_size


class SiglipVisionEncoder(nn.Module):

    def __init__(self, vision_encoder, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_encoder_name = vision_encoder
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        if not delay_load:
            self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2')
            self.load_model()
        else:
            # uncertain whether flash-attention-2 is supported during inference phase.
            self.attn_implementation = 'sdpa' # 'eager'
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name)

    def load_model(self):
        if self.is_loaded:
            print('Vision tower is already loaded, `load model` call again, skipping.')
            return

        self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_encoder_name)

        self.vision_encoder = SiglipVisionModel.from_pretrained(self.vision_encoder_name,
                                                              attn_implementation=self.attn_implementation)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    def forward(self, images, **kwargs):
        images = torch.cat(images)
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_encoder.dtype

    @property
    def device(self):
        return self.vision_encoder.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_encoder.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2

    @property
    def num_patches_per_side(self):
        return self.config.image_size // self.config.patch_size

    @property
    def image_size(self):
        return self.config.image_size


class Videollama3VisionEncoder(nn.Module):

    def __init__(self, vision_encoder, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_encoder_name = vision_encoder
        self.args = args

        if not delay_load:
            self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2')
            self.load_model(self.args)
        else:
            # uncertain whether flash-attention-2 is supported during inference phase.
            self.attn_implementation = 'sdpa' # 'eager'
            self.cfg_only = Videollama3VisionEncoderConfig.from_pretrained(self.vision_encoder_name)

    def load_model(self, args):
        if self.is_loaded:
            print('Vision tower is already loaded, `load model` call again, skipping.')
            return

        # merge_size is set to 1 by default, because STAGE1, STAGE1.5, STAGE2 are trained with merge_size=1
        # for stage 3, the merge_size is set to 2 by argments. 
        self.image_processor = Videollama3ImageProcessor.from_pretrained(self.vision_encoder_name)

        # merge_size is fixed to 1 for STAGE1, STAGE1.5, STAGE2, STAGE3 in encoder and can be modified in connector.
        self.cfg_only = Videollama3VisionEncoderConfig.from_pretrained(self.vision_encoder_name)

        self.vision_encoder = Videollama3VisionEncoderModel.from_pretrained(
            self.vision_encoder_name,
            torch_dtype=args.torch_dtype,
            attn_implementation=self.attn_implementation)

        self.is_loaded = True

    def forward(self, pixel_values, grid_sizes, merge_sizes, **kwargs):
        image_features = self.vision_encoder(pixel_values, grid_sizes, merge_sizes)
        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_encoder.dtype

    @property
    def device(self):
        return self.vision_encoder.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_encoder.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return -1

    @property
    def num_patches_per_side(self):
        return -1

    @property
    def image_size(self):
        return -1


def build_vision_encoder(vision_encoder_cfg, **kwargs):
    vision_encoder = getattr(vision_encoder_cfg, 'mm_vision_encoder', getattr(vision_encoder_cfg, 'vision_encoder', None))

    if  'clip' in vision_encoder:
        vision_encoder = CLIPVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs)
    elif 'navit' in vision_encoder.lower() or 'damovl' in vision_encoder:
        vision_encoder = Videollama3VisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs)
    elif 'siglip' in vision_encoder:
        vision_encoder = SiglipVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs)
    else:
        raise ValueError(f'Unknown vision encoder: {vision_encoder}')

    return vision_encoder