Spaces:
Runtime error
Runtime error
File size: 22,651 Bytes
372785b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
# Adopted from https://github.com/magic-research/Sa2VA.
# Below is the original copyright:
# coding=utf-8
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
linear_cross_entropy = None
import torch
import torch.nn.functional as F
import torch.nn as nn
from rynnec.constants import IGNORE_INDEX
from torch import Tensor
import logging
from huggingface_hub import hf_hub_download
import functools
from typing import Callable, Optional
def reduce_loss(loss: Tensor, reduction: str) -> Tensor:
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
# none: 0, elementwise_mean:1, sum: 2
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss: Tensor,
weight: Optional[Tensor] = None,
reduction: str = 'mean',
avg_factor: Optional[float] = None) -> Tensor:
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Optional[Tensor], optional): Element-wise weights.
Defaults to None.
reduction (str, optional): Same as built-in losses of PyTorch.
Defaults to 'mean'.
avg_factor (Optional[float], optional): Average factor when
computing the mean of losses. Defaults to None.
Returns:
Tensor: Processed loss values.
"""
# if weight is specified, apply element-wise weight
if weight is not None:
loss = loss * weight
# if avg_factor is not specified, just reduce the loss
if avg_factor is None:
loss = reduce_loss(loss, reduction)
else:
# if reduction is mean, then average the loss by avg_factor
if reduction == 'mean':
# Avoid causing ZeroDivisionError when avg_factor is 0.0,
# i.e., all labels of an image belong to ignore index.
eps = torch.finfo(torch.float32).eps
loss = loss.sum() / (avg_factor + eps)
# if reduction is 'none', then do nothing, otherwise raise an error
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def dice_loss(pred,
target,
weight=None,
eps=1e-3,
reduction='mean',
naive_dice=False,
avg_factor=None):
"""Calculate dice loss, there are two forms of dice loss is supported:
- the one proposed in `V-Net: Fully Convolutional Neural
Networks for Volumetric Medical Image Segmentation
<https://arxiv.org/abs/1606.04797>`_.
- the dice loss in which the power of the number in the
denominator is the first power instead of the second
power.
Args:
pred (torch.Tensor): The prediction, has a shape (n, *)
target (torch.Tensor): The learning label of the prediction,
shape (n, *), same shape of pred.
weight (torch.Tensor, optional): The weight of loss for each
prediction, has a shape (n,). Defaults to None.
eps (float): Avoid dividing by zero. Default: 1e-3.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'.
Options are "none", "mean" and "sum".
naive_dice (bool, optional): If false, use the dice
loss defined in the V-Net paper, otherwise, use the
naive dice loss in which the power of the number in the
denominator is the first power instead of the second
power.Defaults to False.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
"""
input = pred.flatten(1)
target = target.flatten(1).float()
a = torch.sum(input * target, 1)
if naive_dice:
b = torch.sum(input, 1)
c = torch.sum(target, 1)
d = (2 * a + eps) / (b + c + eps)
else:
b = torch.sum(input * input, 1) + eps
c = torch.sum(target * target, 1) + eps
d = (2 * a) / (b + c)
loss = 1 - d
if weight is not None:
assert weight.ndim == loss.ndim
assert len(weight) == len(pred)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
class DiceLoss(nn.Module):
def __init__(self,
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=False,
loss_weight=1.0,
eps=1e-3):
"""Compute dice loss.
Args:
use_sigmoid (bool, optional): Whether to the prediction is
used for sigmoid or softmax. Defaults to True.
activate (bool): Whether to activate the predictions inside,
this will disable the inside sigmoid operation.
Defaults to True.
reduction (str, optional): The method used
to reduce the loss. Options are "none",
"mean" and "sum". Defaults to 'mean'.
naive_dice (bool, optional): If false, use the dice
loss defined in the V-Net paper, otherwise, use the
naive dice loss in which the power of the number in the
denominator is the first power instead of the second
power. Defaults to False.
loss_weight (float, optional): Weight of loss. Defaults to 1.0.
eps (float): Avoid dividing by zero. Defaults to 1e-3.
"""
super(DiceLoss, self).__init__()
self.use_sigmoid = use_sigmoid
self.reduction = reduction
self.naive_dice = naive_dice
self.loss_weight = loss_weight
self.eps = eps
self.activate = activate
def forward(self,
pred,
target,
weight=None,
reduction_override=None,
avg_factor=None):
"""Forward function.
Args:
pred (torch.Tensor): The prediction, has a shape (n, *).
target (torch.Tensor): The label of the prediction,
shape (n, *), same shape of pred.
weight (torch.Tensor, optional): The weight of loss for each
prediction, has a shape (n,). Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The reduction method used to
override the original reduction method of the loss.
Options are "none", "mean" and "sum".
Returns:
torch.Tensor: The calculated loss
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
if self.activate:
if self.use_sigmoid:
pred = pred.sigmoid()
else:
raise NotImplementedError
loss = self.loss_weight * dice_loss(
pred,
target,
weight,
eps=self.eps,
reduction=reduction,
naive_dice=self.naive_dice,
avg_factor=avg_factor)
return loss
def cross_entropy_loss(
hidden_states,
lm_head,
position_ids,
labels,
reduction_scope="sequence",
**loss_kwargs
):
batch_size = hidden_states.size(0)
shift_hidden_states = hidden_states[..., :-1, :]
shift_labels = labels[..., 1:]
mask = shift_labels != IGNORE_INDEX
shift_hidden_states = shift_hidden_states[mask].contiguous()
shift_labels = shift_labels[mask].contiguous()
if mask.sum() == 0:
print(f"Get labels={labels}. Found no sample to calculate loss!")
pseudo_logits = lm_head(hidden_states[:, 0:1])
loss = 0.0 * pseudo_logits.mean()
return loss
if "num_items_in_batch" not in loss_kwargs:
reduction = "mean"
denominator = None
elif reduction_scope == "batch":
reduction = "sum"
denominator = loss_kwargs["num_items_in_batch"]
elif reduction_scope == "sequence":
reduction = "none"
if batch_size == 1:
# NOTE: packed sequence
start_indices = torch.nonzero(position_ids[0] == 0)[:, 0]
end_indices = F.pad(start_indices[1:], (0, 1), value=position_ids.size(1))
batch_indices = torch.cat(
[
torch.full((e - s,), fill_value=i, device=position_ids.device, dtype=torch.long)
for i, (s, e) in enumerate(zip(start_indices, end_indices))
],
).unsqueeze(0)
else:
batch_indices = torch.arange(batch_size, device=position_ids.device)
batch_indices = batch_indices.unsqueeze(1).expand(-1, hidden_states.size(1))
shift_batch_indices = batch_indices[..., :-1]
shift_batch_indices = shift_batch_indices[mask].contiguous()
num_tokens = F.one_hot(shift_batch_indices).sum(dim=0)
denominator = num_tokens[shift_batch_indices] * loss_kwargs["num_items_in_batch"]
else:
raise ValueError(f"Unknown reduction scope: {reduction_scope}")
if linear_cross_entropy is None:
shift_logits = lm_head(shift_hidden_states)
loss = torch.nn.functional.cross_entropy(
shift_logits,
shift_labels,
reduction=reduction,
)
else:
loss = linear_cross_entropy(
shift_hidden_states,
lm_head.weight,
shift_labels,
bias=lm_head.bias,
reduction=reduction,
accum_e_fp32=True,
accum_c_fp32=True,
)
if denominator is not None:
loss = loss / denominator
if loss.ndim > 0:
loss = loss.sum()
return loss
def cross_entropy(pred,
label,
weight=None,
reduction='mean',
avg_factor=None,
class_weight=None,
ignore_index=-100,
avg_non_ignore=False):
"""Calculate the CrossEntropy loss.
Args:
pred (torch.Tensor): The prediction with shape (N, C), C is the number
of classes.
label (torch.Tensor): The learning label of the prediction.
weight (torch.Tensor, optional): Sample-wise loss weight.
reduction (str, optional): The method used to reduce the loss.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (int | None): The label index to be ignored.
If None, it will be set to default value. Default: -100.
avg_non_ignore (bool): The flag decides to whether the loss is
only averaged over non-ignored targets. Default: False.
Returns:
torch.Tensor: The calculated loss
"""
# The default value of ignore_index is the same as F.cross_entropy
ignore_index = -100 if ignore_index is None else ignore_index
# element-wise losses
loss = F.cross_entropy(
pred,
label,
weight=class_weight,
reduction='none',
ignore_index=ignore_index)
# average loss over non-ignored elements
# pytorch's official cross_entropy average loss over non-ignored elements
# refer to https://github.com/pytorch/pytorch/blob/56b43f4fec1f76953f15a627694d4bba34588969/torch/nn/functional.py#L2660 # noqa
if (avg_factor is None) and avg_non_ignore and reduction == 'mean':
avg_factor = label.numel() - (label == ignore_index).sum().item()
# apply weights and do the reduction
if weight is not None:
weight = weight.float()
loss = weight_reduce_loss(
loss, weight=weight, reduction=reduction, avg_factor=avg_factor)
return loss
def _expand_onehot_labels(labels, label_weights, label_channels, ignore_index):
"""Expand onehot labels to match the size of prediction."""
bin_labels = labels.new_full((labels.size(0), label_channels), 0)
valid_mask = (labels >= 0) & (labels != ignore_index)
inds = torch.nonzero(
valid_mask & (labels < label_channels), as_tuple=False)
if inds.numel() > 0:
bin_labels[inds, labels[inds]] = 1
valid_mask = valid_mask.view(-1, 1).expand(labels.size(0),
label_channels).float()
if label_weights is None:
bin_label_weights = valid_mask
else:
bin_label_weights = label_weights.view(-1, 1).repeat(1, label_channels)
bin_label_weights *= valid_mask
return bin_labels, bin_label_weights, valid_mask
def binary_cross_entropy(pred,
label,
weight=None,
reduction='mean',
avg_factor=None,
class_weight=None,
ignore_index=-100,
avg_non_ignore=False):
"""Calculate the binary CrossEntropy loss.
Args:
pred (torch.Tensor): The prediction with shape (N, 1) or (N, ).
When the shape of pred is (N, 1), label will be expanded to
one-hot format, and when the shape of pred is (N, ), label
will not be expanded to one-hot format.
label (torch.Tensor): The learning label of the prediction,
with shape (N, ).
weight (torch.Tensor, optional): Sample-wise loss weight.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (int | None): The label index to be ignored.
If None, it will be set to default value. Default: -100.
avg_non_ignore (bool): The flag decides to whether the loss is
only averaged over non-ignored targets. Default: False.
Returns:
torch.Tensor: The calculated loss.
"""
# The default value of ignore_index is the same as F.cross_entropy
ignore_index = -100 if ignore_index is None else ignore_index
if pred.dim() != label.dim():
label, weight, valid_mask = _expand_onehot_labels(
label, weight, pred.size(-1), ignore_index)
else:
# should mask out the ignored elements
valid_mask = ((label >= 0) & (label != ignore_index)).float()
if weight is not None:
# The inplace writing method will have a mismatched broadcast
# shape error if the weight and valid_mask dimensions
# are inconsistent such as (B,N,1) and (B,N,C).
weight = weight * valid_mask
else:
weight = valid_mask
# average loss over non-ignored elements
if (avg_factor is None) and avg_non_ignore and reduction == 'mean':
avg_factor = valid_mask.sum().item()
# weighted element-wise losses
weight = weight.float()
loss = F.binary_cross_entropy_with_logits(
pred, label.float(), pos_weight=class_weight, reduction='none')
# do the reduction for the weighted loss
loss = weight_reduce_loss(
loss, weight, reduction=reduction, avg_factor=avg_factor)
return loss
def mask_cross_entropy(pred,
target,
label,
reduction='mean',
avg_factor=None,
class_weight=None,
ignore_index=None,
**kwargs):
"""Calculate the CrossEntropy loss for masks.
Args:
pred (torch.Tensor): The prediction with shape (N, C, *), C is the
number of classes. The trailing * indicates arbitrary shape.
target (torch.Tensor): The learning label of the prediction.
label (torch.Tensor): ``label`` indicates the class label of the mask
corresponding object. This will be used to select the mask in the
of the class which the object belongs to when the mask prediction
if not class-agnostic.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
class_weight (list[float], optional): The weight for each class.
ignore_index (None): Placeholder, to be consistent with other loss.
Default: None.
Returns:
torch.Tensor: The calculated loss
Example:
>>> N, C = 3, 11
>>> H, W = 2, 2
>>> pred = torch.randn(N, C, H, W) * 1000
>>> target = torch.rand(N, H, W)
>>> label = torch.randint(0, C, size=(N,))
>>> reduction = 'mean'
>>> avg_factor = None
>>> class_weights = None
>>> loss = mask_cross_entropy(pred, target, label, reduction,
>>> avg_factor, class_weights)
>>> assert loss.shape == (1,)
"""
assert ignore_index is None, 'BCE loss does not support ignore_index'
# TODO: handle these two reserved arguments
assert reduction == 'mean' and avg_factor is None
num_rois = pred.size()[0]
inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device)
pred_slice = pred[inds, label].squeeze(1)
return F.binary_cross_entropy_with_logits(
pred_slice, target, weight=class_weight, reduction='mean')[None]
class CrossEntropyLoss(nn.Module):
def __init__(self,
use_sigmoid=False,
use_mask=False,
reduction='mean',
class_weight=None,
ignore_index=None,
loss_weight=1.0,
avg_non_ignore=False):
"""CrossEntropyLoss.
Args:
use_sigmoid (bool, optional): Whether the prediction uses sigmoid
of softmax. Defaults to False.
use_mask (bool, optional): Whether to use mask cross entropy loss.
Defaults to False.
reduction (str, optional): . Defaults to 'mean'.
Options are "none", "mean" and "sum".
class_weight (list[float], optional): Weight of each class.
Defaults to None.
ignore_index (int | None): The label index to be ignored.
Defaults to None.
loss_weight (float, optional): Weight of the loss. Defaults to 1.0.
avg_non_ignore (bool): The flag decides to whether the loss is
only averaged over non-ignored targets. Default: False.
"""
super(CrossEntropyLoss, self).__init__()
assert (use_sigmoid is False) or (use_mask is False)
self.use_sigmoid = use_sigmoid
self.use_mask = use_mask
self.reduction = reduction
self.loss_weight = loss_weight
self.class_weight = class_weight
self.ignore_index = ignore_index
self.avg_non_ignore = avg_non_ignore
if ((ignore_index is not None) and not self.avg_non_ignore
and self.reduction == 'mean'):
warnings.warn(
'Default ``avg_non_ignore`` is False, if you would like to '
'ignore the certain label and average loss over non-ignore '
'labels, which is the same with PyTorch official '
'cross_entropy, set ``avg_non_ignore=True``.')
if self.use_sigmoid:
self.cls_criterion = binary_cross_entropy
elif self.use_mask:
self.cls_criterion = mask_cross_entropy
else:
self.cls_criterion = cross_entropy
def extra_repr(self):
"""Extra repr."""
s = f'avg_non_ignore={self.avg_non_ignore}'
return s
def forward(self,
cls_score,
label,
weight=None,
avg_factor=None,
reduction_override=None,
ignore_index=None,
**kwargs):
"""Forward function.
Args:
cls_score (torch.Tensor): The prediction.
label (torch.Tensor): The learning label of the prediction.
weight (torch.Tensor, optional): Sample-wise loss weight.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction_override (str, optional): The method used to reduce the
loss. Options are "none", "mean" and "sum".
ignore_index (int | None): The label index to be ignored.
If not None, it will override the default value. Default: None.
Returns:
torch.Tensor: The calculated loss.
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
if ignore_index is None:
ignore_index = self.ignore_index
if self.class_weight is not None:
class_weight = cls_score.new_tensor(
self.class_weight, device=cls_score.device)
else:
class_weight = None
loss_cls = self.loss_weight * self.cls_criterion(
cls_score,
label,
weight,
class_weight=class_weight,
reduction=reduction,
avg_factor=avg_factor,
ignore_index=ignore_index,
avg_non_ignore=self.avg_non_ignore,
**kwargs)
return loss_cls
|