File size: 26,171 Bytes
372785b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
# Adopted from: https://github.com/DAMO-NLP-SG/VideoLLaMA3. 
# Adopted from: https://github.com/haotian-liu/LLaVA. 
# Below is the original copyright:
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union, Dict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoImageProcessor,
                          Qwen2Config, Qwen2ForCausalLM, Qwen2Model)
from transformers.generation.utils import GenerateOutput
# from transformers.modeling_outputs import CausalLMOutputWithPast
from dataclasses import dataclass
from transformers.utils import ModelOutput

from .loss import cross_entropy_loss, CrossEntropyLoss, DiceLoss
from .processor import Videollama3BaseProcessor
from .rynnec_arch import RynnecMetaForCausalLM, RynnecMetaModel
from .videollama3_encoder import Videollama3ImageProcessor
from rynnec.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN
from .sam2_train import SAM2TrainRunner
from .sam2 import SAM2
from .utils import genetate_video_pred_embeddings, process_video_gt_masks

CHAT_TEMPLATE = """
{%- set identifier = 'im' %}
{% for message in messages %}
    {% if message['role'] == 'stream' %}
        {% set identifier = 'stream' %}
    {% else %}
        {% set identifier = 'im' %}
    {% endif %}
    {% if message['role'] is not none %}
        {{- '<|' + identifier + '_start|>' + message['role'] + '\n' -}}
    {% endif %}
    {% if message['content'] is string %}
        {{- message['content'] + '<|' + identifier + '_end|>\n' -}}
    {% else %}
        {% for content in message['content'] %}
            {% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}
                {% if 'time' in content %}
                    {{- 'Time ' + content['time'] | round(1) | string + 's: ' -}}
                {% endif %}
                {{- image_token + '\n' -}}
            {% elif content['type'] == 'video' or 'video' in content or 'video_url' in content %}
                {% for i in range(content['num_frames']) %}
                    {% if 'timestamps' in content %}
                        {{- 'Time ' + content['timestamps'][i] | round(1) | string + 's:' -}}
                    {% endif %}
                    {% if i < content['num_frames'] - 1 %}
                        {{- image_token + ',' -}}
                    {% else %}
                        {{- image_token + '\n' -}}
                    {% endif %}
                {% endfor %}
            {% elif content['type'] == 'text' or 'text' in content %}
                {{- content['text'] -}}
            {% endif %}
        {% endfor %}
        {% if message['role'] is not none %}
            {{- '<|' + identifier + '_end|>\n' -}}
        {% endif %}
    {% endif %}
{% endfor %}
{% if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' -}}
    {% if add_think_prompt %}
        {{- '<think>\n' -}}
    {% endif %}
{% endif %}
"""
@dataclass
class CausalLMOutputWithPast(ModelOutput):
    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    rope_deltas: Optional[torch.LongTensor] = None
    ce_loss: Optional[torch.FloatTensor] = None
    mask_bce_loss: Optional[torch.FloatTensor] = None
    mask_dice_loss: Optional[torch.FloatTensor] = None
    mask_loss: Optional[torch.FloatTensor] = None


class Videollama3Qwen2Processor(Videollama3BaseProcessor):

    tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
    chat_template = CHAT_TEMPLATE

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        chat_template=None,
        image_merge_size: int = 1,
        video_merge_size: int = 2,
        fps=1,
        max_frames=180,
        **kwargs
    ):
        super().__init__(image_processor, tokenizer, chat_template, **kwargs)
        self.generation_prompt = self._infer_generation_prompt()
        self.generation_prompt_ids = self.tokenizer.encode(self.generation_prompt, return_tensors="pt")
        self.generation_prompt_length = len(self.generation_prompt_ids[0])

    def _infer_generation_prompt(self):
        pseudo_message = [{"role": "user", "content": ""}]
        instruction = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=True)
        conversation = self.apply_chat_template(pseudo_message, tokenize=False, add_generation_prompt=False)
        return instruction.replace(conversation, "")

    def _process_text_with_label(
        self,
        text: List[Dict],
        grid_sizes: torch.Tensor = None,
        **kwargs,
    ):
        assert kwargs.pop("return_tensors", "pt") == "pt", "Only PyTorch tensors are supported when return_labels=True."
        assert isinstance(text[0], dict), "When return_labels=True, text must be a list of messages."

        input_ids_list = []
        targets_list = []
        image_idx = 0

        for message_idx, message in enumerate(text):
            # 1. set chat template and append image tokens
            prompt = self.apply_chat_template([message], tokenize=False, add_generation_prompt=False)
            prompt_chunks = prompt.split(DEFAULT_IMAGE_TOKEN)
            prompt = []
            for chunk_idx in range(len(prompt_chunks) - 1):
                prompt.append(prompt_chunks[chunk_idx])
                thw = grid_sizes[image_idx]
                prompt.append(DEFAULT_IMAGE_TOKEN * thw.prod().long())
                image_idx += 1
            prompt.append(prompt_chunks[-1])
            prompt = "".join(prompt)

            input_ids = self.tokenizer.encode(prompt, return_tensors="pt")[0]
            input_ids_list.append(input_ids)

            targets = torch.full_like(input_ids, IGNORE_INDEX)
            if message["role"] == "assistant" or message["role"] is None:
                targets[self.generation_prompt_length:-1] = input_ids[self.generation_prompt_length:-1].clone()

                # NOTE: mask out image tokens
                vision_mask = input_ids == self.image_token_id
                targets[vision_mask] = IGNORE_INDEX
                vision_indices = torch.nonzero(vision_mask, as_tuple=True)[0]
                targets[vision_indices + 1] = IGNORE_INDEX

                # NOTE: mask out <think> or <think>\n
                think_mask = targets == self.think_start_token_id
                targets[think_mask] = IGNORE_INDEX
                think_indices = torch.nonzero(think_mask, as_tuple=True)[0]
                newline_mask = torch.zeros_like(think_mask)
                newline_mask[think_indices + 1] = targets[think_indices + 1] == self.newline_token_id
                targets[newline_mask] = IGNORE_INDEX

            targets_list.append(targets)

        assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text."

        text_inputs = {
            "input_ids": torch.cat(input_ids_list),
            "labels": torch.cat(targets_list),
        }

        return text_inputs


class RynnecQwen2Config(Qwen2Config):
    model_type = "rynnec_qwen2"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.model_type = "rynnec_qwen2"


class RynnecQwen2Model(RynnecMetaModel, Qwen2Model):
    config_class = RynnecQwen2Config

    def __init__(self, config: RynnecQwen2Config):
        super(RynnecQwen2Model, self).__init__(config)

        if hasattr(config, "mm_mask_decoder"): # inference
            self.build_mask_decoder(config)
        else: # training
            if 'out_dim' not in config:
                config.out_dim = 256        

    def build_mask_decoder(self, config):
            
        # Projection layer for lisa
        in_dim = config.hidden_size
        out_dim = config.out_dim
        text_fc = [
            nn.Linear(in_dim, in_dim),
            nn.ReLU(inplace=True),
            nn.Linear(in_dim, out_dim),
            nn.Dropout(0.0),
        ]
        self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])
        self.text_hidden_fcs.train()
        for param in self.text_hidden_fcs.parameters():
            param.requires_grad = True    


class RynnecQwen2ForCausalLM(Qwen2ForCausalLM, RynnecMetaForCausalLM):
    config_class = RynnecQwen2Config

    def __init__(self, config, **kwargs):
        super(Qwen2ForCausalLM, self).__init__(config)
        self.model = RynnecQwen2Model(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()
        
        if hasattr(config, "training") and config.training is True:
            self.grounding_encoder = SAM2TrainRunner(ckpt_path=config.mask_decoder_model)
            config.mm_mask_decoder = True
        else:
            self.grounding_encoder = SAM2(ckpt_path=config.mask_decoder_model)
        
        self.loss_mask = CrossEntropyLoss(
            use_sigmoid=True,
            reduction='mean',
            loss_weight=2.0
        )
        self.loss_dice = DiceLoss(
            use_sigmoid=True,
            activate=True,
            reduction='mean',
            naive_dice=True,
            eps=1.0,
            loss_weight=0.5
        )

    def load_sam2_weights(self, model_path):
        sam2_model = torch.load(model_path, map_location='cpu')['model']
        prefix = "sam2_model."
        new_state_dict = {}
        for param_name in sam2_model.keys():
            new_param_name = prefix + param_name
            new_state_dict[new_param_name] = sam2_model[param_name]

        self.grounding_encoder.load_state_dict(new_state_dict, strict=False)

    def get_model(self):
        return self.model
    # NOTE: arguments are copied from transformers==4.46.3
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
        # multimodal inputs
        pixel_values: Optional[torch.FloatTensor] = None,
        grid_sizes: Optional[torch.LongTensor] = None,
        merge_sizes: Optional[torch.LongTensor] = None,
        modals: Optional[List[str]] = None,
        masks: Optional[List[torch.LongTensor]] = None,
        mask_ids = None,
        sam_images = None,
        sam_size = None,
        image2maskids = None,
        **loss_kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        torch.cuda.empty_cache()
        if inputs_embeds is None:
            input_ids_raw = input_ids.clone()
            (
                input_ids,
                attention_mask,
                position_ids,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                labels=labels,
                pixel_values=pixel_values,
                grid_sizes=grid_sizes,
                merge_sizes=merge_sizes,
                modals=modals,
                masks=masks,
                mask_ids=mask_ids
            )

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        loss, logits = None, None
        _valid = True
        seg_valid = True

        if labels is not None: #training

            ce_loss = cross_entropy_loss(
                hidden_states=hidden_states,
                lm_head=self.lm_head,
                position_ids=position_ids,
                labels=labels,
                reduction_scope=self.config.loss_reduction_scope,
                **loss_kwargs,
            )

            if self.config.has_mask:

                hidden_states_sam = []
                hidden_states_sam.append(self.model.text_hidden_fcs[0](hidden_states))
                hidden_states_sam = torch.stack(hidden_states_sam, dim=-1).sum(dim=-1)

                bs = input_ids_raw.shape[0]
                gt_masks_list = []
                pred_masks_list = []
                mask_bce_loss = 0
                mask_dice_loss = 0
                num_masks = 0
                for i in range(bs):
                    pred_masks = []
                    pred_embeddings = []
                    input_id = input_ids_raw[i]
                    seg_token_mask = input_id[1:]==self.config.seg_token_index
                    seg_token_mask = torch.cat(
                        [
                            seg_token_mask,
                            torch.zeros((1)).bool().cuda(),
                        ],
                        dim=0,
                    )

                    pred_embedding = hidden_states_sam[i][seg_token_mask]
                    if len(pred_embedding)>0:
                        pred_embeddings.append(pred_embedding)
                    else:
                        pred_embeddings.append(hidden_states_sam[i, :1])
        
                
                    gt_masks_video = []  # FIXME: Only support one segmentation now
                    gt_mask = masks[i]
                    mask_valid = True
                    
                    if len(image2maskids[i])==0:
                        sam_images[i] = sam_images[i][:1]
                        gt_masks_video.append(torch.zeros((len(sam_images[i]), 224, 224)).to(sam_images[0].device))
                        mask_valid = False
                        
                    else:
                        for mids in image2maskids[i]:
                            for mid in mids:
                                if mid is None:
                                    gt_masks_video.append(torch.zeros((224, 224)).unsqueeze(0).to(gt_mask[0].device))
                                else:
                                    gt_masks_video.append(gt_mask[mid].unsqueeze(0))
                    frames_per_batch = [len(sam_images[i])]
                    try:
                        pred_embeddings_list_video = genetate_video_pred_embeddings(pred_embeddings, frames_per_batch)

                        # pred_embeddings_list_video, gt_masks_video = check_obj_number(pred_embeddings_list_video, gt_masks_video)

                        g_pixel_values = sam_images[i]
                        num_objs = len(pred_embeddings_list_video[0]) 
                
                        # with torch.no_grad():
            
                        sam_states = self.grounding_encoder.get_sam2_embeddings(g_pixel_values, expand_size=num_objs)
                        language_embeddings = torch.cat(pred_embeddings_list_video, dim=0)[:, None]#.contiguous()

                        num_frames = len(pred_embeddings_list_video)
                        gt_masks_video = process_video_gt_masks(gt_masks_video, num_frames, num_objs)
                        pred_masks = self.grounding_encoder.inject_language_embd(sam_states, language_embeddings, nf_nobj=(num_frames, num_objs))
                        
                        gt_masks = [F.interpolate(gt_mask.unsqueeze(0), size=pred_masks[0].shape[-2:], mode='nearest').squeeze(0) for gt_mask in gt_masks_video]
                        gt_masks = torch.cat(gt_masks, dim=0)
                        pred_masks = pred_masks.flatten(0, 1)

                        if not mask_valid:
                            pred_masks = pred_masks*0.0
                    
                        if len(pred_masks) != len(gt_masks):
                            # drop this data
                            print(f"Pred mask shape {pred_masks.shape} is not equal to gt_mask shape {gt_masks.shape} !!!")
                            min_num = min(len(pred_masks), len(gt_masks))
                            pred_masks = pred_masks[:min_num]
                            gt_masks = gt_masks[:min_num]
                            seg_valid = False

                        if not seg_valid or not mask_valid:
                            _scale = 0.0
                        else:
                            _scale = 1.0

                        mask_bce_loss_ = self.loss_mask(pred_masks, gt_masks) * len(pred_masks) * _scale
                        mask_dice_loss_ = self.loss_dice(pred_masks, gt_masks) * len(gt_masks) * _scale
                        mask_bce_loss += mask_bce_loss_
                        mask_dice_loss += mask_dice_loss_
                        num_masks += len(pred_masks)
                    except Exception as exp:
                        print(exp) 
                        _valid = False
            

                if num_masks>0:
                    mask_bce_loss = mask_bce_loss / num_masks
                    mask_dice_loss = mask_dice_loss / num_masks

                mask_bce_loss = self.config.bce_loss_weight * mask_bce_loss 
                mask_dice_loss = self.config.dice_loss_weight * mask_dice_loss 
                if _valid==False:
                    mask_bce_loss = mask_bce_loss * 0.0
                    mask_dice_loss = mask_dice_loss* 0.0
                
                mask_loss = mask_bce_loss + mask_dice_loss
                loss = mask_loss + ce_loss
            else:
                loss = ce_loss

        else:
            # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
            logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        if loss is not None:
            if self.config.has_mask:
                return CausalLMOutputWithPast(
                    loss=loss,
                    ce_loss=ce_loss.detach(),
                    mask_bce_loss=mask_bce_loss.detach(),
                    mask_dice_loss=mask_dice_loss.detach(),
                    mask_loss=mask_loss.detach(),
                    logits=logits,
                    past_key_values=outputs.past_key_values,
                    hidden_states=outputs.hidden_states,
                    attentions=outputs.attentions,
                )
            else:
                return CausalLMOutputWithPast(
                    loss=loss,
                    logits=logits,
                    past_key_values=outputs.past_key_values,
                    hidden_states=outputs.hidden_states,
                    attentions=outputs.attentions,
                )
        else: #infer
            return CausalLMOutputWithPast(
                loss=loss,
                logits=logits,
                past_key_values=outputs.past_key_values,
                hidden_states=outputs.hidden_states,
                attentions=outputs.attentions,
            )

    @torch.no_grad()
    def inference(
        self,
        # multimodal inputs
        pixel_values: Optional[torch.FloatTensor] = None,
        grid_sizes: Optional[torch.LongTensor] = None,
        merge_sizes: Optional[torch.LongTensor] = None,
        modals: Optional[List[str]] = None,
        masks: Optional[List[torch.LongTensor]] = None,
        mask_ids = None,
        sam_images = None,
        sam_size = None,
        image2maskids = None,
        seg_start_idx = 0,
        **kwargs,
    ):
        outputs = self.generate(
            pixel_values=pixel_values,
            grid_sizes=grid_sizes,
            merge_sizes=merge_sizes,
            modals=modals,
            masks=masks,
            mask_ids=mask_ids,
            output_hidden_states=True,
            return_dict_in_generate=True,
            **kwargs
        )

        input_ids = kwargs.pop('input_ids')
        last_hidden_state = []
        for hs in outputs.hidden_states: # round
            last_hidden_state.append(hs[-1])
        last_hidden_state = torch.cat(last_hidden_state, dim=1)

        output_ids = outputs.sequences

        concat_ids = torch.cat((input_ids, output_ids), dim=1)
        seg_token_mask = concat_ids[:, 1:] == self.config.seg_token_index

        last_hidden_state_sam = self.model.text_hidden_fcs[0](last_hidden_state)

        pred_embeddings = last_hidden_state_sam[seg_token_mask]
        seg_token_counts = seg_token_mask.int().sum() 

        if seg_token_counts>0:

            g_pixel_values = torch.cat(sam_images, dim=0).contiguous()
            num_objs = 1 #FIXME: Only support one segmentation now
            if seg_start_idx>0:
            # before start idx
                g_pixel_values_beg = g_pixel_values[:seg_start_idx+1].flip(0)
                num_frames = len(g_pixel_values_beg)
                sam_states_beg = self.grounding_encoder.get_sam2_embeddings(g_pixel_values_beg)
                pred_masks_beg = self.grounding_encoder.language_embd_inference(sam_states_beg, [pred_embeddings]*num_frames)
            else:
                pred_masks_beg = torch.zeros((1, 1, 1024, 1024)).to(pixel_values.device)
            
            if seg_start_idx<=len(g_pixel_values)-1:
                g_pixel_values_end = g_pixel_values[seg_start_idx:]
                num_frames = len(g_pixel_values_end)
                sam_states_end = self.grounding_encoder.get_sam2_embeddings(g_pixel_values_end)
                pred_masks_end = self.grounding_encoder.language_embd_inference(sam_states_end, [pred_embeddings]*num_frames)
            else:
                pred_masks_end = torch.zeros((0, 1, 1024, 1024)).to(pixel_values.device)
            
            pred_masks = torch.cat([pred_masks_beg[1:].flip(0), pred_masks_end], dim=0)

        return output_ids, pred_masks

        
    @torch.no_grad()
    def generate(
        self,
        # multimodal inputs
        pixel_values: Optional[torch.FloatTensor] = None,
        grid_sizes: Optional[torch.LongTensor] = None,
        merge_sizes: Optional[torch.LongTensor] = None,
        modals: Optional[List[str]] = None,
        masks: Optional[List[torch.LongTensor]] = None,
        mask_ids = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        input_ids = kwargs.pop("input_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        position_ids = kwargs.pop("position_ids", None)
        past_key_values = kwargs.pop("past_key_values", None)

        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if pixel_values is not None:
            (
                input_ids,
                attention_mask,
                position_ids,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                labels=None,
                pixel_values=pixel_values,
                grid_sizes=grid_sizes,
                merge_sizes=merge_sizes,
                modals=modals,
                masks=masks,
                mask_ids=mask_ids
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(input_ids)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        _inputs = super().prepare_inputs_for_generation(
            input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
        )
        if images is not None:
            _inputs['images'] = images
        return _inputs


AutoConfig.register("rynnec_qwen2", RynnecQwen2Config)
AutoModelForCausalLM.register(RynnecQwen2Config, RynnecQwen2ForCausalLM)
AutoProcessor.register(RynnecQwen2Config, Videollama3Qwen2Processor)
AutoImageProcessor.register(RynnecQwen2Config, Videollama3ImageProcessor)