Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | |
# and OPT implementations in this library. It has been modified from its | |
# original forms to accommodate minor architectural differences compared | |
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" | |
Processor class for VideoLLaMA3. | |
""" | |
from abc import ABCMeta, abstractmethod | |
import copy | |
import warnings | |
from collections import defaultdict | |
from typing import List, Union, Dict, Optional, Any | |
import json | |
import torch | |
from transformers.feature_extraction_utils import BatchFeature | |
from transformers.image_utils import ImageInput, VideoInput | |
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack | |
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput | |
from rynnec.constants import DEFAULT_IMAGE_TOKEN, IGNORE_INDEX | |
from rynnec.mm_utils import load_video, load_images | |
from rynnec.model.videollama3_encoder.image_processing_videollama3 import is_valid_image, is_valid_video | |
class Videollama3ProcessorKwargs(ProcessingKwargs, total=False): | |
_defaults = { | |
"text_kwargs": { | |
"padding": False, | |
}, | |
} | |
class Videollama3BaseProcessor(ProcessorMixin, metaclass=ABCMeta): | |
r""" | |
Modified from Qwen2VLProcessor | |
Args: | |
image_processor ([`Qwen2VLImageProcessor`], *optional*): | |
The image processor is a required input. | |
tokenizer ([`Qwen2TokenizerFast`], *optional*): | |
The tokenizer is a required input. | |
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages | |
in a chat into a tokenizable string. | |
""" | |
attributes = ["image_processor", "tokenizer"] | |
valid_kwargs = ["chat_template", "image_merge_size", "video_merge_size", "fps", "max_frames"] | |
image_processor_class = "AutoImageProcessor" | |
tokenizer_class = None | |
chat_template = None | |
def __init__( | |
self, | |
image_processor=None, | |
tokenizer=None, | |
chat_template=None, | |
image_merge_size: int = 1, | |
video_merge_size: int = 2, | |
fps=1, | |
max_frames=180, | |
**kwargs | |
): | |
if chat_template is not None: | |
self.chat_template = chat_template | |
self.image_processor = image_processor | |
self.tokenizer = tokenizer | |
self.image_merge_size = image_merge_size | |
self.video_merge_size = video_merge_size | |
self.fps = fps | |
self.max_frames = max_frames | |
if self.chat_template is not None: | |
self.tokenizer.chat_template = self.chat_template | |
self.image_token = DEFAULT_IMAGE_TOKEN | |
self.think_start_token = "<think>" | |
self.think_end_token = "</think>" | |
self.tokenizer.add_tokens([self.image_token], special_tokens=True) | |
self.tokenizer.add_tokens([self.think_start_token, self.think_end_token], special_tokens=False) | |
self.image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token) | |
self.think_start_token_id = self.tokenizer.convert_tokens_to_ids(self.think_start_token) | |
self.think_end_token_id = self.tokenizer.convert_tokens_to_ids(self.think_end_token) | |
self.newline_token_id = self.tokenizer.encode("\n")[0] | |
def load_video(self, *args, **kwargs): | |
return load_video(*args, **kwargs) | |
def load_images(self, *args, **kwargs): | |
return load_images(*args, **kwargs) | |
def _get_downsampled_grid_sizes(self, image_inputs: Dict[str, Any]): | |
grid_sizes = [] | |
for grid_size, merge_size in zip(image_inputs.get("grid_sizes", []), image_inputs.get("merge_sizes", [])): | |
if not torch.all(grid_size[1:] % merge_size == 0): | |
warnings.warn(f"Grid size {grid_size} is not divisible by merge size. Some undesired errors may occur.") | |
if grid_size[0] == 1: | |
grid_sizes.append(grid_size[1:] / merge_size) | |
elif grid_size[0] > 1: | |
grid_sizes.extend([grid_size[1:] / merge_size] * grid_size[0]) | |
return grid_sizes | |
def _get_visual_seq_len(self, grid_size: torch.Tensor): | |
num_tokens = int(grid_size.prod().item()) | |
return num_tokens | |
def _process_text_with_label( | |
self, | |
text: List[Dict], | |
grid_sizes: torch.Tensor = None, | |
**kwargs, | |
): | |
return {} | |
def _process_text_without_label( | |
self, | |
text: Union[List[str], List[Dict]], | |
grid_sizes: torch.Tensor = None, | |
**kwargs, | |
): | |
if isinstance(text, (list, tuple)) and isinstance(text[0], dict): | |
warnings.warn("Input text is a list of messages. Automatically convert it to a string with 'apply_chat_template' with generation prompt.") | |
text = self.apply_chat_template(text, tokenize=False, add_generation_prompt=True) | |
if len(grid_sizes) > 0: | |
image_idx = 0 | |
while self.image_token in text: | |
thw = grid_sizes[image_idx] | |
text = text.replace(self.image_token, "<placeholder>" * thw.prod().long(), 1) | |
image_idx += 1 | |
text = text.replace("<placeholder>", self.image_token) | |
assert len(grid_sizes) == image_idx, "Number of images does not match the number of image tokens in the text." | |
text_inputs = self.tokenizer(text, **kwargs) | |
return text_inputs | |
def process_text( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]], | |
image_inputs: Dict[str, torch.Tensor] = {}, | |
return_labels: bool = False, | |
**kwargs, | |
): | |
kwargs.pop("padding", None) | |
kwargs.pop("padding_side", None) | |
grid_sizes = [] | |
for grid_size, merge_size in zip(image_inputs.get("grid_sizes", []), image_inputs.get("merge_sizes", [])): | |
if not torch.all(grid_size[1:] % merge_size == 0): | |
warnings.warn(f"Grid size {grid_size} is not divisible by merge size. Some undesired errors may occur.") | |
if grid_size[0] == 1: | |
grid_sizes.append(grid_size[1:] / merge_size) | |
elif grid_size[0] > 1: | |
grid_sizes.extend([grid_size[1:] / merge_size] * grid_size[0]) | |
if return_labels: | |
return self._process_text_with_label(text, grid_sizes, **kwargs) | |
return self._process_text_without_label(text, grid_sizes, **kwargs) | |
def process_images( | |
self, | |
images: ImageInput = None, | |
merge_size: Optional[int] = 1, | |
**kwargs, | |
): | |
if images is None: | |
return {} | |
image_inputs = self.image_processor(images=images, merge_size=merge_size, **kwargs) | |
return image_inputs | |
def __call__( | |
self, | |
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput], List[Dict]] = None, | |
images: ImageInput = None, | |
merge_size: Optional[int] = 1, | |
return_labels: bool = False, | |
**kwargs: Unpack[Videollama3ProcessorKwargs], | |
) -> BatchFeature: | |
""" | |
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | |
and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode | |
the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to | |
Qwen2VLImageProcessor's [`~Qwen2VLImageProcessor.__call__`] if `vision_infos` is not `None`. | |
Args: | |
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | |
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | |
tensor. Both channels-first and channels-last formats are supported. | |
text (`str`, `List[str]`, `List[List[str]]`): | |
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | |
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | |
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | |
return_tensors (`str` or [`~utils.TensorType`], *optional*): | |
If set, will return tensors of a particular framework. Acceptable values are: | |
- `'tf'`: Return TensorFlow `tf.constant` objects. | |
- `'pt'`: Return PyTorch `torch.Tensor` objects. | |
- `'np'`: Return NumPy `np.ndarray` objects. | |
- `'jax'`: Return JAX `jnp.ndarray` objects. | |
Returns: | |
[`BatchFeature`]: A [`BatchFeature`] with the following fields: | |
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | |
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | |
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | |
`None`). | |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | |
- **grid_sizes** -- List of image 3D grid in LLM. Returned when `images` is not `None`. | |
""" | |
output_kwargs = self._merge_kwargs( | |
Videollama3ProcessorKwargs, | |
tokenizer_init_kwargs=self.tokenizer.init_kwargs, | |
**kwargs, | |
) | |
output_kwargs["text_kwargs"].pop("padding", None) | |
output_kwargs["text_kwargs"].pop("padding_side", None) | |
image_inputs = self.process_images(images, merge_size, **output_kwargs["images_kwargs"]) | |
text_inputs = self.process_text(text, image_inputs, return_labels, **output_kwargs["text_kwargs"]) | |
return BatchFeature(data={**text_inputs, **image_inputs}) | |
def batch_decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | |
refer to the docstring of this method for more information. | |
""" | |
return self.tokenizer.batch_decode(*args, **kwargs) | |
def decode(self, *args, **kwargs): | |
""" | |
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | |
the docstring of this method for more information. | |
""" | |
return self.tokenizer.decode(*args, **kwargs) | |
def _load_multimodal_data(self, conversation: List[Dict[str, Any]]): | |
multimodal_info = defaultdict(list) | |
new_conversation = [] | |
for message in conversation: | |
new_message = {"role": message["role"]} | |
if not isinstance(message["content"], (list, tuple)): | |
new_message["content"] = message["content"] | |
new_conversation.append(new_message) | |
continue | |
new_contents = [] | |
for content in message["content"]: | |
if not isinstance(content, dict): | |
new_contents.append(content) | |
continue | |
assert "type" in content, "Content must have 'type' field." | |
if content["type"] in ["image", "video"] and content["type"] in content and isinstance(content[content["type"]], dict): | |
# TODO: support other types which are not compatible with json | |
load_args = content[content["type"]] | |
data_id = json.dumps({k: v for k, v in load_args.items() if not k in ["start_time", "end_time"]}) | |
new_content = copy.deepcopy(content) | |
multimodal_info[data_id].append(new_content) | |
new_contents.append(new_content) | |
else: | |
new_contents.append(content) | |
new_message["content"] = new_contents | |
new_conversation.append(new_message) | |
for data_id, contents in multimodal_info.items(): | |
data_type = contents[0]["type"] | |
if data_type == "image": | |
image = self.load_images(contents[0][data_type]["image_path"])[0] | |
for content in contents: | |
content["image"] = image.copy() | |
elif data_type == "video": | |
# TODO: start_time is None? | |
start_times = [content["video"].get("start_time", 0.) for content in contents] | |
end_times = [content["video"].get("end_time", float("inf")) for content in contents] | |
load_args = contents[0][data_type] | |
start_time, end_time = min(start_times), max(end_times) | |
if start_time > 0: | |
load_args["start_time"] = start_time | |
if end_time < float("inf"): | |
load_args["end_time"] = end_time | |
images, timestamps = self.load_video(**load_args) | |
for content, start_time, end_time in zip(contents, start_times, end_times): | |
cur_images, cur_timestamps = [], [] | |
for image, timestamp in zip(images, timestamps): | |
if start_time <= timestamp <= end_time: | |
cur_images.append(image.copy()) | |
cur_timestamps.append(timestamp) | |
content[data_type] = cur_images | |
content["num_frames"] = len(cur_images) | |
content["timestamps"] = cur_timestamps | |
return new_conversation | |
def _gather_multimodal_data(self, conversation: List[Dict[str, Any]]): | |
images = [] | |
for message in conversation: | |
if not isinstance(message["content"], (list, tuple)): | |
continue | |
for content in message["content"]: | |
if not isinstance(content, dict): | |
continue | |
if content["type"] == "video": | |
video = content["video"] | |
assert is_valid_video(video), f"Invalid video data: {video}." | |
images.append(video) | |
if content["type"] == "image": | |
image = content["image"] | |
assert is_valid_image(image), f"Invalid image data: {image}." | |
images.append(image) | |
images = images if len(images) > 0 else None | |
return images | |
def apply_chat_template( | |
self, | |
conversation: List[Dict[str, Any]], | |
chat_template: Optional[str] = None, | |
tokenize: bool = False, | |
add_system_prompt: bool = False, | |
add_generation_prompt: bool = False, | |
add_think_prompt: bool = False, | |
return_dict: bool = False, | |
**kwargs, | |
) -> str: | |
""" | |
Similar to the `apply_chat_template` method on tokenizers, this method applies a Jinja template to input | |
conversations to turn them into a single tokenizable string. | |
Args: | |
conversation (`List[Dict, str, str]`): | |
The conversation to format. | |
chat_template (`Optional[str]`, *optional*): | |
The Jinja template to use for formatting the conversation. If not provided, the tokenizer's | |
chat template is used. | |
tokenize (`bool`, *optional*, defaults to `False`): | |
Whether to tokenize the output or not. | |
add_system_prompt (`bool`, *optional*, defaults to `False`): | |
Whether to add the system prompt to the output or not. | |
add_generation_prompt (`bool`, *optional*, defaults to `False`): | |
Whether to add the generation prompt to the output or not. | |
image_token (`Optional[str]`, *optional*, defaults to `<image>`): | |
The token to use for indicating images in the conversation. | |
**kwargs: | |
Additional keyword arguments | |
""" | |
if chat_template is None: | |
if self.chat_template is not None: | |
chat_template = self.chat_template | |
else: | |
raise ValueError( | |
"No chat template is set for this processor. Please either set the `chat_template` attribute, " | |
"or provide a chat template as an argument. See " | |
"https://huggingface.co/docs/transformers/main/en/chat_templating for more information." | |
) | |
images = None | |
if return_dict: | |
conversation = self._load_multimodal_data(conversation) | |
images = self._gather_multimodal_data(conversation) | |
prompt = self.tokenizer.apply_chat_template( | |
conversation, | |
chat_template=chat_template, | |
tokenize=tokenize, | |
add_system_prompt=add_system_prompt, | |
add_generation_prompt=add_generation_prompt, | |
add_think_prompt=add_think_prompt, | |
image_token=self.image_token, | |
**kwargs | |
) | |
out = {"text": prompt, "images": images} | |
if return_dict: | |
return out | |
return out["text"] | |
def model_input_names(self): | |
tokenizer_input_names = self.tokenizer.model_input_names | |
image_processor_input_names = self.image_processor.model_input_names | |
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | |