RynnEC / rynnec /train.py
lixin4ever's picture
Upload (#2)
372785b verified
# Adopted from https://github.com/DAMO-NLP-SG/VideoLLaMA3. Below is the original copyright:
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import copy
import json
import os
import pathlib
import random
import re
import sys
import warnings
import traceback
from packaging import version
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Sequence
import numpy as np
import pyarrow as pa
# torch-related packages
# NOTE: torch must be imported before transformers. Otherwise, `Segmentation fault (core dumped)` will occur.
import torch
import transformers
from packaging import version
import datasets
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import Dataset
from transformers.models.mixtral.modeling_mixtral import MixtralSparseMoeBlock
from transformers import logging
# logging.set_verbosity_error()
sys.path.append('./')
from rynnec.constants import (IGNORE_INDEX, MODAL_INDEX_MAP,
NUM_FRAMES, DEFAULT_IMAGE_TOKEN, STREAM_MAX_FRAMES,
STREAM_DOWNSAMPLING, STREAM_FPS, STREAM_IMAGE_SIZE,
STREAM_START_TOKEN, STREAM_END_TOKEN, REGION_TOKEN, SEG_TOKEN, REGION_TOKEN_REPLACE)
from rynnec.mm_utils import (load_images, load_video, DirectResize, load_video_from_ids,
tokenizer_multimodal_token, annToMask, sam_preprocess_batch)
from rynnec.model import *
from rynnec.rynnec_trainer import (
RynnECTrainer, find_all_linear_names, get_peft_state_maybe_zero_3,
get_peft_state_non_lora_maybe_zero_3, safe_save_model_for_hf_trainer)
# NOTE: fast tokenizer warning issue: https://github.com/huggingface/transformers/issues/5486
os.environ["TOKENIZERS_PARALLELISM"] = "true"
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
def set_seed(seed=42):
"""
Set the random seed for reproducible results.
:param seed: An integer value to be used as the random seed.
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def int_with_none(value):
if value == 'None':
return None
return int(value)
@dataclass
class ModelArguments:
# LLM Arguments
model_type: Optional[str] = field(default="rynnec", metadata={"help": "Model type selected in the list: " + ", ".join('rynnec_qwen2')})
model_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5")
version: Optional[str] = field(default="v1", metadata={"help": "Version of the conversation template."})
freeze_backbone: bool = field(default=False, metadata={"help": "Whether to freeze the LLM backbone."})
# Connector Arguments
mm_projector_type: Optional[str] = field(default='linear')
pretrain_mm_projector: Optional[str] = field(default=None)
# Vision tower Arguments
vision_encoder: Optional[str] = field(default=None)
mm_vision_select_layer: Optional[int] = field(default=-1)
mm_vision_select_feature: Optional[str] = field(default="patch")
mm_attn_implementation: Optional[str] = field(default="flash_attention_2")
# Token downsampling Arguments
spatial_merge_size: Optional[int] = field(default=1)
mm_max_length: Optional[int] = field(default=10240)
use_token_compression: Optional[bool] = field(default=False)
mask_decoder_model: Optional[str] = field(default="./checkpoints/sam2_hiera_large.pt")
load_sam2_weight: Optional[bool] = field(default=False)
training: Optional[bool] = field(default=True)
has_mask: Optional[bool] = field(default=True)
@dataclass
class DataArguments:
# Path Arguments
data_path: List[str] = field(default=None, metadata={"help": "Path to the training data."})
# image_folder: Optional[str] = field(default=None)
# video_folder: Optional[str] = field(default=None)
data_folder: Optional[str] = field(default=None)
# Loading Arguments
is_multimodal: bool = False
fps: Optional[int] = field(default=None)
max_frames: Optional[int_with_none] = field(default=None)
# Preprocess Arguments
image_aspect_ratio: str = 'square'
use_batch_flattening: bool = field(default=False, metadata={"help": "Whether to flatten the in-batch sequences of variable lengths."})
dataset_cache_dir: Optional[str] = field(default=None)
@dataclass
class TrainingArguments(transformers.TrainingArguments):
# shut auto processing (_remove_unused_columns) of transformers Trainer
remove_unused_columns: bool = field(default=False)
optim: str = field(default="adamw_torch")
# Training learning rate Arguments
vision_encoder_lr: Optional[float] = None
mm_projector_lr: Optional[float] = None
llm_lr: Optional[float] = None
region_encoder_lr: Optional[float] = None
sam_encoder_lr: Optional[float] = None
sam_decoder_lr: Optional[float] = None
# Training Data Arguments
group_by_modality_length: bool = field(default=False)
model_max_length: int = field(
default=512,
metadata={
"help":
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
# Lora or Quant Arguments
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."}
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
)
bits: int = field(
default=16,
metadata={"help": "How many bits to use."}
)
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
use_workload_balancing: bool = field(default=False, metadata={"help": "Whether to use data balancing."})
loss_reduction_scope: str = field(default="batch", metadata={"help": "Loss reduction scope."})
context_parallel_size: int = field(default=1, metadata={"help": "Context parallel size."})
use_liger_kernel: bool = field(default=False, metadata={"help": "Whether to use Liger Kernel."})
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, data_path: str, vlprocessor, data_args: DataArguments):
super(LazySupervisedDataset, self).__init__()
data_objs = []
try:
for data in data_path:
# NOTE: load_dataset can process both json or jsonl files
if data.endswith(".json") or data.endswith(".jsonl"):
data_objs.append(load_dataset("json", data_files=data, cache_dir=data_args.dataset_cache_dir)["train"])
else:
raise Exception(f"Unsupported file format (<{data}>)!")
list_data_dict = concatenate_datasets(data_objs)
except:
traceback.print_exc()
# NOTE: compatible with the old version
list_data_dict = []
for data in data_path:
if data.endswith(".json"):
data = json.load(open(data, "r"))
for i in data:
i['id'] = len(list_data_dict)
list_data_dict.append(i)
elif data.endswith(".jsonl"):
with open(data, "r", encoding="utf-8") as fp:
for line in fp:
line = line.strip()
obj = json.loads(line)
obj["id"] = len(list_data_dict)
list_data_dict.append(obj)
else:
raise Exception(f"Unsupported file format (<{data}>)!!!")
rank0_print("Formatting inputs...Skip in lazy mode")
self.vlprocessor = vlprocessor
self.list_data_dict = list_data_dict
self.data_args = data_args
img_size=1024
self.img_size = img_size
self.sam_transform = DirectResize(img_size)
def __len__(self):
return len(self.list_data_dict)
@property
def lengths(self):
length_list = []
for sample in self.list_data_dict:
img_tokens = 576 if 'image' in sample else 0
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
return length_list
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
if cur_len==0:
cur_len = 1
cur_len = cur_len if 'masks' in sample and sample['masks'] is not None and ('seg' not in sample or sample['seg'] is None) else -cur_len
length_list.append(cur_len)
return length_list
def _convert_normal(self, data_dict):
data_folder = self.data_args.data_folder
conversation = copy.deepcopy(data_dict["conversations"])
# data sanity check and repair
start_idx = 0
for sentence in conversation:
if sentence["from"] == "human" or sentence["from"] == "system":
break
start_idx += 1
if start_idx > 0:
warnings.warn(f"Find {start_idx} non-user sentences at the beginning of the conversation, remove them automatically!")
conversation = conversation[start_idx:]
assert len(conversation) > 1, f"Invalid conversation"
mask_ids = []
if 'image' in data_dict and data_dict['image'] is not None:
modal = 'image'
if all(not "<image>" in sentence["value"] for sentence in conversation):
warnings.warn(f"Image tag not found in the conversation, add it automatically at the beginning!")
conversation[0]["value"] = "<image>" + conversation[0]["value"]
image_file = data_dict['image']
if isinstance(image_file, list):
image_file = [os.path.join(data_folder, f) for f in image_file]
else:
image_file = os.path.join(data_folder, image_file)
images = load_images(image_file)
masks = []
if 'masks' in data_dict and data_dict['masks'] is not None:
if 'height' in data_dict:
h = data_dict['height']
w = data_dict['width']
else:
h = None
w = None
if isinstance(data_dict['masks'], str):
masks_ = json.load(open(data_dict['masks']))
else:
masks_= data_dict['masks']
image2maskids = []
mask_idx = 0
for ann in masks_:
image2maskids_ = []
mask = annToMask(ann, h, w)
masks.append(mask)
mask_ids.append(0)
image2maskids_.append(mask_idx)
mask_idx += 1
image2maskids.append(image2maskids_)
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
seg_flag = False
for conv in conversation:
conv['value'] = conv['value'].replace(REGION_TOKEN_REPLACE, f'[{REGION_TOKEN}]')
if SEG_TOKEN in conv['value']:
seg_flag = True
if seg_flag is False:
image2maskids = []
else:
mask_ids = [-10000 for i in range(len(mask_ids))]
else:
image2maskids = []
masks = torch.zeros((1, 336, 336))
mask_ids.append(-10000)
elif 'video' in data_dict and data_dict['video'] is not None:
modal = 'video'
if all(not "<video>" in sentence["value"] for sentence in conversation):
warnings.warn(f"Video tag not found in the conversation, add it automatically at the beginning!")
conversation[0]["value"] = "<video>" + conversation[0]["value"]
if 'video_root' in data_dict and data_dict['video_root'] is not None:
video_root = data_dict['video_root']
video_file = [os.path.join(video_root,d) for d in data_dict['video']]
else:
video_file = data_dict['video']
if not isinstance(video_file, list):
video_file = [video_file]
if isinstance(video_file, list) and len(video_file) == 1 and ('timestamps' not in data_dict or data_dict['timestamps'] is None):
video_file = os.path.join(data_folder, video_file[0])
must_sample_frames = []
if 'masks' in data_dict and data_dict['masks'] is not None:
if isinstance(data_dict['masks'], str):
masks_ = json.load(open(data_dict['masks']))
else:
masks_= data_dict['masks']
for ann in masks_:
for k in ann.keys():
must_sample_frames.append(int(k))
images, timestamps, mask_ids = load_video_from_ids(video_file, fps=self.data_args.fps, max_frames=self.data_args.max_frames, must_sample_frames=must_sample_frames)
elif isinstance(video_file, list): #images
images = []
for vf in video_file:
images+=load_images(os.path.join(data_folder, vf))
timestamps = data_dict['timestamps']
else:
raise ValueError(f"Unsupported video format: {video_file}")
images = [images]
masks = []
mask_nums = []
image2maskids = []
maskid = 0
if 'masks' in data_dict and data_dict['masks'] is not None:
if 'mask_ids' in data_dict and data_dict['mask_ids'] is not None:
mask_ids = data_dict["mask_ids"]
if 'height' in data_dict:
h = data_dict['height']
w = data_dict['width']
else:
h = None
w = None
if isinstance(data_dict['masks'], str):
masks_ = json.load(open(data_dict['masks']))
else:
masks_= data_dict['masks']
for ann in masks_:
image2maskids_ = [None]*len(video_file)
for k in ann.keys():
mask = annToMask(ann[k], h, w)
masks.append(mask)
image2maskids_[mask_ids[maskid]] = maskid
maskid+=1
image2maskids.append(image2maskids_)
mask_nums.append(len(ann.keys()))
masks = np.stack(masks, axis=0)
masks = torch.from_numpy(masks)
conv_i = 0
region_num = 0
seg_flag = False
for idx in range(len(mask_nums)):
while '<region>' not in conversation[conv_i]['value'] and conv_i<len(conversation)-1:
conv_i+=1
conversation[conv_i]['value'] = conversation[conv_i]['value'].replace('<region>', "["+REGION_TOKEN*mask_nums[idx]+"]", 1)
region_num += mask_nums[idx]
if '[SEG]' in conversation[conv_i]['value']:
seg_flag = True
if seg_flag is False:
image2maskids = []
else:
mask_ids = [-10000 for i in range(len(mask_ids))]
# assert region_num == len(masks), f"error in {conversation}"
else:
image2maskids = []
masks = torch.zeros((1, 336, 336))
mask_ids.append(-10000)
else:
modal = 'text'
image2maskids = []
images = None
masks = torch.zeros((1, 336, 336))
sam_size = (336, 336)
sam_images = torch.zeros(1, 3, self.img_size, self.img_size)
mask_ids = [-10000]
if images is not None and len(images)>0:
sam_images = []
sam_size = None
if modal=='video':
for image in images[0]:
sam_image = self.sam_transform.apply_image(np.array(image))
sam_images.append(sam_image)
if sam_size is None:
sam_size = sam_image.shape[:2]
else:
for image in images:
sam_image = self.sam_transform.apply_image(np.array(image))
sam_images.append(sam_image)
if sam_size is None:
sam_size = sam_image.shape[:2]
sam_images = np.array(sam_images)
sam_images = torch.from_numpy(sam_images).permute(0, 3, 1, 2).contiguous()
sam_images = sam_preprocess_batch(sam_images)
messages = []
for conv in conversation:
if conv["from"] == "human":
# replace video tag to image tag for unified processing
# conv["value"] = conv["value"].replace("<video>", "<image>" * len(images))
chunks = conv["value"].split("<image>" if modal == 'image' else "<video>")
messages.append({
"role": "user",
"content": []
})
for chunk_idx in range(1, 2 * len(chunks)):
if chunk_idx % 2 == 1:
chunk = chunks[chunk_idx // 2].strip()
messages[-1]["content"].append({"type": "text", "text": chunk}) if chunk else None
else:
if modal == 'image':
messages[-1]["content"].append({"type": "image"})
elif modal == 'video':
messages[-1]["content"].append({"type": "video", "num_frames": len(images[0]), "time": timestamps})
else:
messages.append({
"role": "assistant",
"content": conv['value']
})
# TODO: dynamic downsampling
# image_downsampling = self.data_args.spatial_merge_size
image_downsampling = 2 if modal == "video" else 1
return modal, images, messages, image_downsampling, masks, mask_ids, sam_images, sam_size, image2maskids
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
data_dict = self.list_data_dict[i]
try:
modal, images, messages, image_downsampling, masks, mask_ids, sam_images, sam_size, image2maskids = self._convert_normal(data_dict)
data_dict = self.vlprocessor(
images=images,
text=messages,
merge_size=image_downsampling,
return_labels=True,
return_tensors="pt",
)
if modal == 'text':
unit_size = self.vlprocessor.image_processor.patch_size**2 * 3
data_dict['pixel_values'] = torch.zeros(self.vlprocessor.image_merge_size**2, unit_size)
data_dict['grid_sizes'] = torch.as_tensor([[1, self.vlprocessor.image_merge_size, self.vlprocessor.image_merge_size]])
data_dict['merge_sizes'] = torch.as_tensor([self.vlprocessor.image_merge_size])
elif modal == 'image' or modal == 'video':
assert len(data_dict['pixel_values']) > 0 and len(data_dict['grid_sizes']) > 0, f"Invalid image data: {data_dict['pixel_values']}, {data_dict['grid_sizes']}"
data_dict['modals'] = [modal] if isinstance(modal, str) else modal
data_dict['masks'] = masks
data_dict['mask_ids'] = mask_ids
data_dict['idx'] = i
data_dict['sam_images'] = sam_images
data_dict['sam_size'] = sam_size
data_dict['image2maskids'] = image2maskids
except Exception as e:
traceback.print_exc()
backup_idx = random.randint(0, len(self.list_data_dict) - 1)
print(f"Encounted error when process {i}-th example: {data_dict}, use {backup_idx}-th example instead!!!")
return self.__getitem__(backup_idx)
return data_dict
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
vlprocessor: transformers.ProcessorMixin
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple([instance[key] for instance in instances]
for key in ("input_ids", "labels"))
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.vlprocessor.tokenizer.pad_token_id)
labels = torch.nn.utils.rnn.pad_sequence(labels,
batch_first=True,
padding_value=IGNORE_INDEX)
input_ids = input_ids[:, :self.vlprocessor.tokenizer.model_max_length]
labels = labels[:, :self.vlprocessor.tokenizer.model_max_length]
attention_mask = input_ids.ne(self.vlprocessor.tokenizer.pad_token_id)
position_ids = attention_mask.cumsum(dim=-1) - 1
batch = dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.vlprocessor.tokenizer.pad_token_id),
position_ids=position_ids
)
# work for 'images' argument in `prepare_inputs_labels_for_multimodal`
batch["pixel_values"] = torch.cat([x["pixel_values"] for x in instances])
batch["grid_sizes"] = torch.cat([x["grid_sizes"] for x in instances])
batch["merge_sizes"] = torch.cat([x["merge_sizes"] for x in instances])
batch["modals"] = sum([x["modals"] for x in instances], [])
batch['mask_ids'] = []
mask_idx_start = 0
for instance in instances:
if len(instance['mask_ids'])>0:
batch['mask_ids'].extend([idx+mask_idx_start for idx in instance['mask_ids']])
# print(int(instance['grid_sizes'][0][0]))
mask_idx_start += int(instance['grid_sizes'][0][0])
batch["masks"] = [x["masks"] for x in instances]
batch["sam_images"] = [x["sam_images"] for x in instances]
batch["sam_size"] = [x["sam_size"] for x in instances]
batch["image2maskids"] = [x["image2maskids"] for x in instances]
batch["idxes"] = [x["idx"] for x in instances]
return batch
def make_supervised_data_module(vlprocessor, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
vlprocessor=vlprocessor,
# data_folder=data_args.data_folder,
data_path=data_args.data_path,
data_args=data_args
)
data_collator = DataCollatorForSupervisedDataset(vlprocessor=vlprocessor)
return dict(train_dataset=train_dataset,
eval_dataset=None,
data_collator=data_collator)
def train(attn_implementation=None):
global local_rank
set_seed(42)
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
if local_rank == 0:
print('------model args------')
print(model_args)
print('------data args------')
print(data_args)
print('------training args------')
print(training_args)
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(dict(
# device_map={"": training_args.device},
# BUG: High version transformers report error:
# ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time
# load_in_4bit=training_args.bits == 4,
# load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["mm_projector"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
bnb_4bit_quant_storage=compute_dtype,
)
))
config = RynnecQwen2Config.from_pretrained(model_args.model_path)
config._attn_implementation = attn_implementation
# NOTE: active spatial_merge_size arguments
config.spatial_merge_size = model_args.spatial_merge_size
config.mm_max_length = model_args.mm_max_length
config.use_token_compression = model_args.use_token_compression
config.loss_reduction_scope = training_args.loss_reduction_scope
config.mask_decoder_model = model_args.mask_decoder_model
config.training = model_args.training
config.has_mask = model_args.has_mask
if model_args.vision_encoder is not None:
model = RynnecQwen2ForCausalLM.from_pretrained(
model_args.model_path,
config=config,
torch_dtype=compute_dtype,
do_sample=True,
**bnb_model_from_pretrained_args
)
if 'mixtral' in model_args.model_type:
import deepspeed
deepspeed.utils.set_z3_leaf_modules(model, [MixtralSparseMoeBlock])
else:
model = transformers.LlamaForCausalLM.from_pretrained(
model_args.model_path,
config=config,
torch_dtype=compute_dtype,
do_sample=True,
**bnb_model_from_pretrained_args
)
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.bits in [4, 8]:
from peft import prepare_model_for_kbit_training
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_path,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
if model_args.vision_encoder is not None:
# initialize vision encoder + multi-modal projector
model.get_model().initialize_vision_modules(model_args=model_args, fsdp=training_args.fsdp)
if model_args.load_sam2_weight is True:
model.get_model().build_mask_decoder(model.get_model().config)
model.load_sam2_weights(model_args.mask_decoder_model)
vision_encoder = model.get_vision_encoder()
vision_encoder.to(dtype=compute_dtype, device=training_args.device)
vision_encoder.image_processor.max_tokens = model_args.mm_max_length
mm_projector = model.get_mm_projector()
mm_projector.to(dtype=compute_dtype if training_args.bf16 else torch.float16, device=training_args.device)
data_args.is_multimodal = True
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
if training_args.bits in [4, 8]:
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
# decoupled learning rate
model.config.llm_lr = training_args.llm_lr
model.config.vision_encoder_lr = training_args.vision_encoder_lr
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.region_encoder_lr = training_args.region_encoder_lr
model.config.sam_decoder_lr = training_args.sam_decoder_lr
model.config.sam_encoder_lr = training_args.sam_encoder_lr
model.config.dice_loss_weight = 0.5
model.config.bce_loss_weight = 2.0
if model.config.llm_lr is None:
for p in model.get_model().parameters():
p.requires_grad = False
for p in model.get_model().vision_encoder.parameters():
p.requires_grad = True
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
for p in model.get_model().region_encoder.parameters():
p.requires_grad = True
if model.config.vision_encoder_lr is None:
for p in model.get_model().vision_encoder.parameters():
p.requires_grad = False
if model.config.mm_projector_lr is None:
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
if model.config.region_encoder_lr is None:
for p in model.get_model().region_encoder.parameters():
p.requires_grad = False
if model.config.sam_decoder_lr is None:
for p in model.grounding_encoder.sam2_model.sam_mask_decoder.parameters():
p.requires_grad = False
else:
for p in model.grounding_encoder.sam2_model.sam_mask_decoder.parameters():
p.requires_grad = True
if model.config.sam_encoder_lr is None:
for p in model.grounding_encoder.sam2_model.image_encoder.parameters():
p.requires_grad = False
if training_args.lora_enable:
for n, p in model.named_parameters():
if any(
[
x in n
for x in ["lm_head", "embed_tokens", "text_hidden_fcs"]
]
):
# print(n)
p.requires_grad = True
model.config.max_frames = getattr(data_args, 'max_frames', NUM_FRAMES)
model.config.image_aspect_ratio = data_args.image_aspect_ratio if 'qwen2vl' not in model_args.vision_encoder else 'qwen2vl'
# NOTE: complement data_args via model hyperparameters
# 1. acquire image size
model.config.image_size = data_args.image_size = vision_encoder.image_size
# 2. calculate the number of tokens in the image
model.config.image_token_length = data_args.image_token_length = mm_projector.cal_proj_size(vision_encoder.num_patches_per_side)
# 3. check if alignment
model.config.is_alignment = training_args.is_alignment = data_args.is_alignment = (
model.config.mm_projector_lr is not None and
model.config.llm_lr is None and
model.config.vision_encoder_lr is None
)
# 4. set spatial merge size as default
model.config.spatial_merge_size = data_args.spatial_merge_size = model_args.spatial_merge_size
tokenizer.add_tokens([DEFAULT_IMAGE_TOKEN, STREAM_START_TOKEN, STREAM_END_TOKEN], special_tokens=True)
tokenizer.add_tokens([REGION_TOKEN], special_tokens=True)
num_new_tokens = tokenizer.add_tokens([SEG_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
model.config.image_token_index = tokenizer.convert_tokens_to_ids(DEFAULT_IMAGE_TOKEN)
model.config.region_token_index = tokenizer.convert_tokens_to_ids(REGION_TOKEN)
model.config.seg_token_index = tokenizer.convert_tokens_to_ids(SEG_TOKEN)
vlprocessor = Videollama3Qwen2Processor(vision_encoder.image_processor, tokenizer)
if training_args.bits in [4, 8]:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if 'norm' in name:
module = module.to(torch.float32)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
if local_rank == 0:
print("Current model:", model)
print("Model config:", model.config)
data_module = make_supervised_data_module(vlprocessor=vlprocessor, data_args=data_args)
# select a Trainer
trainer = RynnECTrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
else:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train(attn_implementation="flash_attention_2")