import os import torch import torch.nn as nn from transformers import (CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel, SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel) from .videollama3_encoder import (Videollama3VisionEncoderConfig, Videollama3VisionEncoderModel, Videollama3ImageProcessor) class CLIPVisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model() else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name) def load_model(self): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_encoder_name) self.vision_encoder = CLIPVisionModel.from_pretrained(self.vision_encoder_name, attn_implementation=self.attn_implementation) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features[:, 1:] elif self.select_feature == 'cls_patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features def forward(self, images, **kwargs): images = torch.cat(images) if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size class SiglipVisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.select_layer = args.mm_vision_select_layer self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model() else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_encoder_name) def load_model(self): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_encoder_name) self.vision_encoder = SiglipVisionModel.from_pretrained(self.vision_encoder_name, attn_implementation=self.attn_implementation) self.is_loaded = True def feature_select(self, image_forward_outs): image_features = image_forward_outs.hidden_states[self.select_layer] if self.select_feature == 'patch': image_features = image_features else: raise ValueError(f'Unexpected select feature: {self.select_feature}') return image_features def forward(self, images, **kwargs): images = torch.cat(images) if type(images) is list: image_features = [] for image in images: image_forward_out = self.vision_encoder(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) image_feature = self.feature_select(image_forward_out).to(image.dtype) image_features.append(image_feature) else: image_forward_outs = self.vision_encoder(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) image_features = self.feature_select(image_forward_outs).to(images.dtype) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return (self.config.image_size // self.config.patch_size) ** 2 @property def num_patches_per_side(self): return self.config.image_size // self.config.patch_size @property def image_size(self): return self.config.image_size class Videollama3VisionEncoder(nn.Module): def __init__(self, vision_encoder, args, delay_load=False): super().__init__() self.is_loaded = False self.vision_encoder_name = vision_encoder self.args = args if not delay_load: self.attn_implementation = getattr(args, 'mm_attn_implementation', 'flash_attention_2') self.load_model(self.args) else: # uncertain whether flash-attention-2 is supported during inference phase. self.attn_implementation = 'sdpa' # 'eager' self.cfg_only = Videollama3VisionEncoderConfig.from_pretrained(self.vision_encoder_name) def load_model(self, args): if self.is_loaded: print('Vision tower is already loaded, `load model` call again, skipping.') return # merge_size is set to 1 by default, because STAGE1, STAGE1.5, STAGE2 are trained with merge_size=1 # for stage 3, the merge_size is set to 2 by argments. self.image_processor = Videollama3ImageProcessor.from_pretrained(self.vision_encoder_name) # merge_size is fixed to 1 for STAGE1, STAGE1.5, STAGE2, STAGE3 in encoder and can be modified in connector. self.cfg_only = Videollama3VisionEncoderConfig.from_pretrained(self.vision_encoder_name) self.vision_encoder = Videollama3VisionEncoderModel.from_pretrained( self.vision_encoder_name, torch_dtype=args.torch_dtype, attn_implementation=self.attn_implementation) self.is_loaded = True def forward(self, pixel_values, grid_sizes, merge_sizes, **kwargs): image_features = self.vision_encoder(pixel_values, grid_sizes, merge_sizes) return image_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.vision_encoder.dtype @property def device(self): return self.vision_encoder.device @property def config(self): if self.is_loaded: return self.vision_encoder.config else: return self.cfg_only @property def hidden_size(self): return self.config.hidden_size @property def num_patches(self): return -1 @property def num_patches_per_side(self): return -1 @property def image_size(self): return -1 def build_vision_encoder(vision_encoder_cfg, **kwargs): vision_encoder = getattr(vision_encoder_cfg, 'mm_vision_encoder', getattr(vision_encoder_cfg, 'vision_encoder', None)) if 'clip' in vision_encoder: vision_encoder = CLIPVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) elif 'navit' in vision_encoder.lower() or 'damovl' in vision_encoder: vision_encoder = Videollama3VisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) elif 'siglip' in vision_encoder: vision_encoder = SiglipVisionEncoder(vision_encoder, args=vision_encoder_cfg, **kwargs) else: raise ValueError(f'Unknown vision encoder: {vision_encoder}') return vision_encoder