fix
Browse files- data/tokenizer.py +0 -260
    	
        data/tokenizer.py
    CHANGED
    
    | @@ -22,160 +22,6 @@ import torch | |
| 22 | 
             
            import torchaudio
         | 
| 23 | 
             
            from encodec import EncodecModel
         | 
| 24 | 
             
            from encodec.utils import convert_audio
         | 
| 25 | 
            -
            from phonemizer.backend import EspeakBackend
         | 
| 26 | 
            -
            from phonemizer.backend.espeak.language_switch import LanguageSwitch
         | 
| 27 | 
            -
            from phonemizer.backend.espeak.words_mismatch import WordMismatch
         | 
| 28 | 
            -
            from phonemizer.punctuation import Punctuation
         | 
| 29 | 
            -
            from phonemizer.separator import Separator
         | 
| 30 | 
            -
            from phonemizer.separator import Separator
         | 
| 31 | 
            -
             | 
| 32 | 
            -
            try:
         | 
| 33 | 
            -
                from pypinyin import Style, pinyin
         | 
| 34 | 
            -
                from pypinyin.style._utils import get_finals, get_initials
         | 
| 35 | 
            -
            except Exception:
         | 
| 36 | 
            -
                pass
         | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
            class PypinyinBackend:
         | 
| 40 | 
            -
                """PypinyinBackend for Chinese. Most codes is referenced from espnet.
         | 
| 41 | 
            -
                There are two types pinyin or initials_finals, one is
         | 
| 42 | 
            -
                just like "ni1 hao3", the other is like "n i1 h ao3".
         | 
| 43 | 
            -
                """
         | 
| 44 | 
            -
             | 
| 45 | 
            -
                def __init__(
         | 
| 46 | 
            -
                    self,
         | 
| 47 | 
            -
                    backend="initials_finals",
         | 
| 48 | 
            -
                    punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(),
         | 
| 49 | 
            -
                ) -> None:
         | 
| 50 | 
            -
                    self.backend = backend
         | 
| 51 | 
            -
                    self.punctuation_marks = punctuation_marks
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                def phonemize(
         | 
| 54 | 
            -
                    self, text: List[str], separator: Separator, strip=True, njobs=1
         | 
| 55 | 
            -
                ) -> List[str]:
         | 
| 56 | 
            -
                    assert isinstance(text, List)
         | 
| 57 | 
            -
                    phonemized = []
         | 
| 58 | 
            -
                    for _text in text:
         | 
| 59 | 
            -
                        _text = re.sub(" +", " ", _text.strip())
         | 
| 60 | 
            -
                        _text = _text.replace(" ", separator.word)
         | 
| 61 | 
            -
                        phones = []
         | 
| 62 | 
            -
                        if self.backend == "pypinyin":
         | 
| 63 | 
            -
                            for n, py in enumerate(
         | 
| 64 | 
            -
                                pinyin(
         | 
| 65 | 
            -
                                    _text, style=Style.TONE3, neutral_tone_with_five=True
         | 
| 66 | 
            -
                                )
         | 
| 67 | 
            -
                            ):
         | 
| 68 | 
            -
                                if all([c in self.punctuation_marks for c in py[0]]):
         | 
| 69 | 
            -
                                    if len(phones):
         | 
| 70 | 
            -
                                        assert phones[-1] == separator.syllable
         | 
| 71 | 
            -
                                        phones.pop(-1)
         | 
| 72 | 
            -
             | 
| 73 | 
            -
                                    phones.extend(list(py[0]))
         | 
| 74 | 
            -
                                else:
         | 
| 75 | 
            -
                                    phones.extend([py[0], separator.syllable])
         | 
| 76 | 
            -
                        elif self.backend == "pypinyin_initials_finals":
         | 
| 77 | 
            -
                            for n, py in enumerate(
         | 
| 78 | 
            -
                                pinyin(
         | 
| 79 | 
            -
                                    _text, style=Style.TONE3, neutral_tone_with_five=True
         | 
| 80 | 
            -
                                )
         | 
| 81 | 
            -
                            ):
         | 
| 82 | 
            -
                                if all([c in self.punctuation_marks for c in py[0]]):
         | 
| 83 | 
            -
                                    if len(phones):
         | 
| 84 | 
            -
                                        assert phones[-1] == separator.syllable
         | 
| 85 | 
            -
                                        phones.pop(-1)
         | 
| 86 | 
            -
                                    phones.extend(list(py[0]))
         | 
| 87 | 
            -
                                else:
         | 
| 88 | 
            -
                                    if py[0][-1].isalnum():
         | 
| 89 | 
            -
                                        initial = get_initials(py[0], strict=False)
         | 
| 90 | 
            -
                                        if py[0][-1].isdigit():
         | 
| 91 | 
            -
                                            final = (
         | 
| 92 | 
            -
                                                get_finals(py[0][:-1], strict=False)
         | 
| 93 | 
            -
                                                + py[0][-1]
         | 
| 94 | 
            -
                                            )
         | 
| 95 | 
            -
                                        else:
         | 
| 96 | 
            -
                                            final = get_finals(py[0], strict=False)
         | 
| 97 | 
            -
                                        phones.extend(
         | 
| 98 | 
            -
                                            [
         | 
| 99 | 
            -
                                                initial,
         | 
| 100 | 
            -
                                                separator.phone,
         | 
| 101 | 
            -
                                                final,
         | 
| 102 | 
            -
                                                separator.syllable,
         | 
| 103 | 
            -
                                            ]
         | 
| 104 | 
            -
                                        )
         | 
| 105 | 
            -
                                    else:
         | 
| 106 | 
            -
                                        assert ValueError
         | 
| 107 | 
            -
                        else:
         | 
| 108 | 
            -
                            raise NotImplementedError
         | 
| 109 | 
            -
                        phonemized.append(
         | 
| 110 | 
            -
                            "".join(phones).rstrip(f"{separator.word}{separator.syllable}")
         | 
| 111 | 
            -
                        )
         | 
| 112 | 
            -
                    return phonemized
         | 
| 113 | 
            -
             | 
| 114 | 
            -
             | 
| 115 | 
            -
            class TextTokenizer:
         | 
| 116 | 
            -
                """Phonemize Text."""
         | 
| 117 | 
            -
             | 
| 118 | 
            -
                def __init__(
         | 
| 119 | 
            -
                    self,
         | 
| 120 | 
            -
                    language="en-us",
         | 
| 121 | 
            -
                    backend="espeak",
         | 
| 122 | 
            -
                    separator=Separator(word="_", syllable="-", phone="|"),
         | 
| 123 | 
            -
                    preserve_punctuation=True,
         | 
| 124 | 
            -
                    punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(),
         | 
| 125 | 
            -
                    with_stress: bool = False,
         | 
| 126 | 
            -
                    tie: Union[bool, str] = False,
         | 
| 127 | 
            -
                    language_switch: LanguageSwitch = "keep-flags",
         | 
| 128 | 
            -
                    words_mismatch: WordMismatch = "ignore",
         | 
| 129 | 
            -
                ) -> None:
         | 
| 130 | 
            -
                    if backend == "espeak":
         | 
| 131 | 
            -
                        phonemizer = EspeakBackend(
         | 
| 132 | 
            -
                            language,
         | 
| 133 | 
            -
                            punctuation_marks=punctuation_marks,
         | 
| 134 | 
            -
                            preserve_punctuation=preserve_punctuation,
         | 
| 135 | 
            -
                            with_stress=with_stress,
         | 
| 136 | 
            -
                            tie=tie,
         | 
| 137 | 
            -
                            language_switch=language_switch,
         | 
| 138 | 
            -
                            words_mismatch=words_mismatch,
         | 
| 139 | 
            -
                        )
         | 
| 140 | 
            -
                    elif backend in ["pypinyin", "pypinyin_initials_finals"]:
         | 
| 141 | 
            -
                        phonemizer = PypinyinBackend(
         | 
| 142 | 
            -
                            backend=backend,
         | 
| 143 | 
            -
                            punctuation_marks=punctuation_marks + separator.word,
         | 
| 144 | 
            -
                        )
         | 
| 145 | 
            -
                    else:
         | 
| 146 | 
            -
                        raise NotImplementedError(f"{backend}")
         | 
| 147 | 
            -
             | 
| 148 | 
            -
                    self.backend = phonemizer
         | 
| 149 | 
            -
                    self.separator = separator
         | 
| 150 | 
            -
             | 
| 151 | 
            -
                def to_list(self, phonemized: str) -> List[str]:
         | 
| 152 | 
            -
                    fields = []
         | 
| 153 | 
            -
                    for word in phonemized.split(self.separator.word):
         | 
| 154 | 
            -
                        # "ɐ    m|iː|n?"    ɹ|ɪ|z|ɜː|v; h|ɪ|z.
         | 
| 155 | 
            -
                        pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE)
         | 
| 156 | 
            -
                        fields.extend(
         | 
| 157 | 
            -
                            [p for p in pp if p != self.separator.phone]
         | 
| 158 | 
            -
                            + [self.separator.word]
         | 
| 159 | 
            -
                        )
         | 
| 160 | 
            -
                    assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count(
         | 
| 161 | 
            -
                        self.separator.phone
         | 
| 162 | 
            -
                    )
         | 
| 163 | 
            -
                    return fields[:-1]
         | 
| 164 | 
            -
             | 
| 165 | 
            -
                def __call__(self, text, strip=True) -> List[List[str]]:
         | 
| 166 | 
            -
                    if isinstance(text, str):
         | 
| 167 | 
            -
                        text = [text]
         | 
| 168 | 
            -
             | 
| 169 | 
            -
                    phonemized = self.backend.phonemize(
         | 
| 170 | 
            -
                        text, separator=self.separator, strip=strip, njobs=1
         | 
| 171 | 
            -
                    )
         | 
| 172 | 
            -
                    return [self.to_list(p) for p in phonemized]
         | 
| 173 | 
            -
             | 
| 174 | 
            -
             | 
| 175 | 
            -
            def tokenize_text(tokenizer: TextTokenizer, text: str) -> List[str]:
         | 
| 176 | 
            -
                phonemes = tokenizer([text.strip()])
         | 
| 177 | 
            -
                return phonemes[0]  # k2symbols
         | 
| 178 | 
            -
             | 
| 179 |  | 
| 180 | 
             
            def remove_encodec_weight_norm(model):
         | 
| 181 | 
             
                from encodec.modules import SConv1d
         | 
| @@ -256,112 +102,6 @@ def tokenize_audio(tokenizer: AudioTokenizer, audio): | |
| 256 | 
             
                return encoded_frames
         | 
| 257 |  | 
| 258 |  | 
| 259 | 
            -
            # @dataclass
         | 
| 260 | 
            -
            # class AudioTokenConfig:
         | 
| 261 | 
            -
            #     frame_shift: Seconds = 320.0 / 24000
         | 
| 262 | 
            -
            #     num_quantizers: int = 8
         | 
| 263 | 
            -
            #
         | 
| 264 | 
            -
            #     def to_dict(self) -> Dict[str, Any]:
         | 
| 265 | 
            -
            #         return asdict(self)
         | 
| 266 | 
            -
            #
         | 
| 267 | 
            -
            #     @staticmethod
         | 
| 268 | 
            -
            #     def from_dict(data: Dict[str, Any]) -> "AudioTokenConfig":
         | 
| 269 | 
            -
            #         return AudioTokenConfig(**data)
         | 
| 270 | 
            -
            #
         | 
| 271 | 
            -
            #
         | 
| 272 | 
            -
            # class AudioTokenExtractor(FeatureExtractor):
         | 
| 273 | 
            -
            #     name = "encodec"
         | 
| 274 | 
            -
            #     config_type = AudioTokenConfig
         | 
| 275 | 
            -
            #
         | 
| 276 | 
            -
            #     def __init__(self, config: Optional[Any] = None):
         | 
| 277 | 
            -
            #         super(AudioTokenExtractor, self).__init__(config)
         | 
| 278 | 
            -
            #         self.tokenizer = AudioTokenizer()
         | 
| 279 | 
            -
            #
         | 
| 280 | 
            -
            #     def extract(
         | 
| 281 | 
            -
            #         self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int
         | 
| 282 | 
            -
            #     ) -> np.ndarray:
         | 
| 283 | 
            -
            #         if not isinstance(samples, torch.Tensor):
         | 
| 284 | 
            -
            #             samples = torch.from_numpy(samples)
         | 
| 285 | 
            -
            #         if sampling_rate != self.tokenizer.sample_rate:
         | 
| 286 | 
            -
            #             samples = convert_audio(
         | 
| 287 | 
            -
            #                 samples,
         | 
| 288 | 
            -
            #                 sampling_rate,
         | 
| 289 | 
            -
            #                 self.tokenizer.sample_rate,
         | 
| 290 | 
            -
            #                 self.tokenizer.channels,
         | 
| 291 | 
            -
            #             )
         | 
| 292 | 
            -
            #         if len(samples.shape) == 2:
         | 
| 293 | 
            -
            #             samples = samples.unsqueeze(0)
         | 
| 294 | 
            -
            #         else:
         | 
| 295 | 
            -
            #             raise ValueError()
         | 
| 296 | 
            -
            #
         | 
| 297 | 
            -
            #         device = self.tokenizer.device
         | 
| 298 | 
            -
            #         encoded_frames = self.tokenizer.encode(samples.detach().to(device))
         | 
| 299 | 
            -
            #         codes = encoded_frames[0][0]  # [B, n_q, T]
         | 
| 300 | 
            -
            #         if True:
         | 
| 301 | 
            -
            #             duration = round(samples.shape[-1] / sampling_rate, ndigits=12)
         | 
| 302 | 
            -
            #             expected_num_frames = compute_num_frames(
         | 
| 303 | 
            -
            #                 duration=duration,
         | 
| 304 | 
            -
            #                 frame_shift=self.frame_shift,
         | 
| 305 | 
            -
            #                 sampling_rate=sampling_rate,
         | 
| 306 | 
            -
            #             )
         | 
| 307 | 
            -
            #             assert abs(codes.shape[-1] - expected_num_frames) <= 1
         | 
| 308 | 
            -
            #             codes = codes[..., :expected_num_frames]
         | 
| 309 | 
            -
            #         return codes.cpu().squeeze(0).permute(1, 0).numpy()
         | 
| 310 | 
            -
            #
         | 
| 311 | 
            -
            #     @property
         | 
| 312 | 
            -
            #     def frame_shift(self) -> Seconds:
         | 
| 313 | 
            -
            #         return self.config.frame_shift
         | 
| 314 | 
            -
            #
         | 
| 315 | 
            -
            #     def feature_dim(self, sampling_rate: int) -> int:
         | 
| 316 | 
            -
            #         return self.config.num_quantizers
         | 
| 317 | 
            -
            #
         | 
| 318 | 
            -
            #     def pad_tensor_list(self, tensor_list, device, padding_value=0):
         | 
| 319 | 
            -
            #         # 计算每个张量的长度
         | 
| 320 | 
            -
            #         lengths = [tensor.shape[0] for tensor in tensor_list]
         | 
| 321 | 
            -
            #         # 使用pad_sequence函数进行填充
         | 
| 322 | 
            -
            #         tensor_list = [torch.Tensor(t).to(device) for t in tensor_list]
         | 
| 323 | 
            -
            #         padded_tensor = torch.nn.utils.rnn.pad_sequence(
         | 
| 324 | 
            -
            #             tensor_list, batch_first=True, padding_value=padding_value
         | 
| 325 | 
            -
            #         )
         | 
| 326 | 
            -
            #         return padded_tensor, lengths
         | 
| 327 | 
            -
            #
         | 
| 328 | 
            -
            #     def extract_batch(self, samples, sampling_rate, lengths) -> np.ndarray:
         | 
| 329 | 
            -
            #         samples = [wav.squeeze() for wav in samples]
         | 
| 330 | 
            -
            #         device = self.tokenizer.device
         | 
| 331 | 
            -
            #         samples, lengths = self.pad_tensor_list(samples, device)
         | 
| 332 | 
            -
            #         samples = samples.unsqueeze(1)
         | 
| 333 | 
            -
            #
         | 
| 334 | 
            -
            #         if not isinstance(samples, torch.Tensor):
         | 
| 335 | 
            -
            #             samples = torch.from_numpy(samples)
         | 
| 336 | 
            -
            #         if len(samples.shape) != 3:
         | 
| 337 | 
            -
            #             raise ValueError()
         | 
| 338 | 
            -
            #         if sampling_rate != self.tokenizer.sample_rate:
         | 
| 339 | 
            -
            #             samples = [
         | 
| 340 | 
            -
            #                 convert_audio(
         | 
| 341 | 
            -
            #                     wav,
         | 
| 342 | 
            -
            #                     sampling_rate,
         | 
| 343 | 
            -
            #                     self.tokenizer.sample_rate,
         | 
| 344 | 
            -
            #                     self.tokenizer.channels,
         | 
| 345 | 
            -
            #                 )
         | 
| 346 | 
            -
            #                 for wav in samples
         | 
| 347 | 
            -
            #             ]
         | 
| 348 | 
            -
            #         # Extract discrete codes from EnCodec
         | 
| 349 | 
            -
            #         with torch.no_grad():
         | 
| 350 | 
            -
            #             encoded_frames = self.tokenizer.encode(samples.detach().to(device))
         | 
| 351 | 
            -
            #         encoded_frames = encoded_frames[0][0]  # [B, n_q, T]
         | 
| 352 | 
            -
            #         batch_codes = []
         | 
| 353 | 
            -
            #         for b, length in enumerate(lengths):
         | 
| 354 | 
            -
            #             codes = encoded_frames[b]
         | 
| 355 | 
            -
            #             duration = round(length / sampling_rate, ndigits=12)
         | 
| 356 | 
            -
            #             expected_num_frames = compute_num_frames(
         | 
| 357 | 
            -
            #                 duration=duration,
         | 
| 358 | 
            -
            #                 frame_shift=self.frame_shift,
         | 
| 359 | 
            -
            #                 sampling_rate=sampling_rate,
         | 
| 360 | 
            -
            #             )
         | 
| 361 | 
            -
            #             batch_codes.append(codes[..., :expected_num_frames])
         | 
| 362 | 
            -
            #         return [codes.cpu().permute(1, 0).numpy() for codes in batch_codes]
         | 
| 363 | 
            -
             | 
| 364 | 
            -
             | 
| 365 | 
             
            if __name__ == "__main__":
         | 
| 366 | 
             
                model = EncodecModel.encodec_model_24khz()
         | 
| 367 | 
             
                model.set_target_bandwidth(6.0)
         | 
|  | |
| 22 | 
             
            import torchaudio
         | 
| 23 | 
             
            from encodec import EncodecModel
         | 
| 24 | 
             
            from encodec.utils import convert_audio
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 |  | 
| 26 | 
             
            def remove_encodec_weight_norm(model):
         | 
| 27 | 
             
                from encodec.modules import SConv1d
         | 
|  | |
| 102 | 
             
                return encoded_frames
         | 
| 103 |  | 
| 104 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 105 | 
             
            if __name__ == "__main__":
         | 
| 106 | 
             
                model = EncodecModel.encodec_model_24khz()
         | 
| 107 | 
             
                model.set_target_bandwidth(6.0)
         | 
