Spaces:
Runtime error
Runtime error
Commit
·
79c6999
0
Parent(s):
Duplicate from liyucheng/selective_context
Browse files- .gitattributes +34 -0
- README.md +14 -0
- app.py +276 -0
- requirements.txt +6 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Selective Context
|
| 3 |
+
emoji: ⚡
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: streamlit
|
| 7 |
+
sdk_version: 1.19.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: cc-by-2.0
|
| 11 |
+
duplicated_from: liyucheng/selective_context
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import re
|
| 5 |
+
from typing import List, Tuple
|
| 6 |
+
import spacy
|
| 7 |
+
import numpy as np
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 10 |
+
|
| 11 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
+
st.set_page_config(layout="wide")
|
| 13 |
+
|
| 14 |
+
@dataclass
|
| 15 |
+
class LexicalUnits:
|
| 16 |
+
unit_type: str
|
| 17 |
+
text: List[str]
|
| 18 |
+
self_info: List[float] = None
|
| 19 |
+
|
| 20 |
+
def __add__(self, other):
|
| 21 |
+
assert self.unit_type == other.unit_type, 'Cannot add two different unit types'
|
| 22 |
+
return LexicalUnits(self.unit_type, self.text + other.text, self.self_info + other.self_info)
|
| 23 |
+
|
| 24 |
+
def __radd__(self, other):
|
| 25 |
+
if other == 0:
|
| 26 |
+
return self
|
| 27 |
+
return NotImplementedError()
|
| 28 |
+
|
| 29 |
+
def add_to_head(self, token, self_info):
|
| 30 |
+
return LexicalUnits(self.unit_type, [token] + self.text, [self_info] + self.self_info)
|
| 31 |
+
|
| 32 |
+
def add_to_tail(self, token, self_info):
|
| 33 |
+
return LexicalUnits(self.unit_type, self.text + [token], self.self_info + [self_info])
|
| 34 |
+
|
| 35 |
+
class SelectiveContext:
|
| 36 |
+
|
| 37 |
+
def __init__(self, model_type = 'gpt2', lang = 'en'):
|
| 38 |
+
|
| 39 |
+
self.model_type = model_type
|
| 40 |
+
self.lang = lang
|
| 41 |
+
|
| 42 |
+
# this means we calculate self-information sentence by sentence
|
| 43 |
+
self.sent_level_self_info = True
|
| 44 |
+
|
| 45 |
+
self._prepare_phrase_tokenizer()
|
| 46 |
+
self.sent_tokenize_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
|
| 47 |
+
self.phrase_mask_token = ''
|
| 48 |
+
self.sent_mask_token = "<deleted>"
|
| 49 |
+
|
| 50 |
+
self._prepare_model()
|
| 51 |
+
|
| 52 |
+
def _prepare_phrase_tokenizer(self):
|
| 53 |
+
# we use space to tokenize sentence into phrases
|
| 54 |
+
# for English, we should use `spacy.load("en_core_web_sm").add_pipe('merge_noun_chunks')`
|
| 55 |
+
# for Chinese, use `nlp = spacy.load('zh_core_web_sm')`` directly
|
| 56 |
+
lang = self.lang
|
| 57 |
+
if lang == "en":
|
| 58 |
+
self.nlp = spacy.load("en_core_web_sm", disable=["ner"])
|
| 59 |
+
self.nlp.add_pipe('merge_noun_chunks')
|
| 60 |
+
elif lang == "zh":
|
| 61 |
+
self.nlp = spacy.load('zh_core_web_sm', disable=["ner"])
|
| 62 |
+
|
| 63 |
+
def _prepare_model(self):
|
| 64 |
+
if self.model_type == 'gpt2':
|
| 65 |
+
if self.lang == 'zh':
|
| 66 |
+
self.model = GPT2LMHeadModel.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
|
| 67 |
+
self.tokenizer = BertTokenizer.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
|
| 68 |
+
else:
|
| 69 |
+
self.model = GPT2LMHeadModel.from_pretrained('gpt2')
|
| 70 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
| 71 |
+
self.model.to(DEVICE)
|
| 72 |
+
self.model.eval()
|
| 73 |
+
|
| 74 |
+
print('model loaded')
|
| 75 |
+
|
| 76 |
+
self.max_token_length = self.model.config.n_positions
|
| 77 |
+
self.get_self_information = self._get_self_info_via_gpt2
|
| 78 |
+
|
| 79 |
+
def get_self_information(self, text: str) -> Tuple[List[str], List[float]]:
|
| 80 |
+
# it takes text as input, and return a list of words and a list of self-information scores
|
| 81 |
+
raise NotImplementedError
|
| 82 |
+
|
| 83 |
+
def _get_self_info_via_gpt2(self, text: str) -> Tuple[List[str], List[float]]:
|
| 84 |
+
if self.lang == 'en':
|
| 85 |
+
text = f"<|endoftext|>{text}"
|
| 86 |
+
elif self.lang == 'zh':
|
| 87 |
+
text = f"[CLS]{text}"
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
encoding = self.tokenizer(text, add_special_tokens=False, return_tensors='pt')
|
| 90 |
+
encoding = encoding.to(DEVICE)
|
| 91 |
+
outputs = self.model(**encoding)
|
| 92 |
+
logits = outputs.logits
|
| 93 |
+
probs = torch.softmax(logits, dim=-1)
|
| 94 |
+
self_info = -torch.log(probs)
|
| 95 |
+
|
| 96 |
+
input_ids = encoding['input_ids']
|
| 97 |
+
input_ids_expaned = input_ids[:, 1:].unsqueeze(-1)
|
| 98 |
+
|
| 99 |
+
tokens = [self.tokenizer.decode(token_) for token_ in input_ids.squeeze().tolist()[1:]]
|
| 100 |
+
return tokens, self_info[:, :-1].gather(-1, input_ids_expaned).squeeze(-1).squeeze(0).tolist()
|
| 101 |
+
|
| 102 |
+
def _lexical_unit(self, sents):
|
| 103 |
+
|
| 104 |
+
if self.sent_level_self_info:
|
| 105 |
+
sent_self_info = []
|
| 106 |
+
all_noun_phrases = []
|
| 107 |
+
all_noun_phrases_info = []
|
| 108 |
+
all_tokens = []
|
| 109 |
+
all_token_self_info = []
|
| 110 |
+
|
| 111 |
+
for sent in sents:
|
| 112 |
+
print(sent)
|
| 113 |
+
tokens, self_info = self.get_self_information(sent)
|
| 114 |
+
sent_self_info.append(np.mean(self_info))
|
| 115 |
+
|
| 116 |
+
all_tokens.extend(tokens)
|
| 117 |
+
all_token_self_info.extend(self_info)
|
| 118 |
+
|
| 119 |
+
noun_phrases, noun_phrases_info = self._calculate_lexical_unit(tokens, self_info)
|
| 120 |
+
|
| 121 |
+
# We need to add a space before the first noun phrase for every sentence except the first one
|
| 122 |
+
if len(all_noun_phrases) != 0:
|
| 123 |
+
noun_phrases[0] = f" {noun_phrases[0]}"
|
| 124 |
+
all_noun_phrases.extend(noun_phrases)
|
| 125 |
+
all_noun_phrases_info.extend(noun_phrases_info)
|
| 126 |
+
|
| 127 |
+
return [
|
| 128 |
+
LexicalUnits('sent', text=sents, self_info=sent_self_info),
|
| 129 |
+
LexicalUnits('phrase', text=all_noun_phrases, self_info=all_noun_phrases_info),
|
| 130 |
+
LexicalUnits('token', text=all_tokens, self_info=all_token_self_info)
|
| 131 |
+
]
|
| 132 |
+
|
| 133 |
+
def _calculate_lexical_unit(self, tokens, self_info):
|
| 134 |
+
def _unit_info(tokens, self_info, units):
|
| 135 |
+
current_unit_idx = 0
|
| 136 |
+
current_position = 0
|
| 137 |
+
unit_self_info = [[] for _ in range(len(units))]
|
| 138 |
+
|
| 139 |
+
for idx, (token, info) in enumerate(zip(tokens, self_info)):
|
| 140 |
+
current_position += len(token)
|
| 141 |
+
if current_position == len(units[current_unit_idx]):
|
| 142 |
+
unit_self_info[current_unit_idx].append(info)
|
| 143 |
+
current_position = current_position - len(units[current_unit_idx])
|
| 144 |
+
current_unit_idx += 1
|
| 145 |
+
elif current_position > len(units[current_unit_idx]):
|
| 146 |
+
counter_ = 1
|
| 147 |
+
current_position = current_position - len(units[current_unit_idx])
|
| 148 |
+
current_unit_idx += 1
|
| 149 |
+
while current_position >= len(units[current_unit_idx]):
|
| 150 |
+
counter_ += 1
|
| 151 |
+
current_position = current_position - len(units[current_unit_idx])
|
| 152 |
+
current_unit_idx += 1
|
| 153 |
+
if current_unit_idx >= len(units):
|
| 154 |
+
break
|
| 155 |
+
partial_info = info/counter_
|
| 156 |
+
for _ in range(counter_):
|
| 157 |
+
unit_self_info[(current_unit_idx-1) - _].append(partial_info)
|
| 158 |
+
else:
|
| 159 |
+
if token == " ":
|
| 160 |
+
continue
|
| 161 |
+
unit_self_info[current_unit_idx].append(info)
|
| 162 |
+
|
| 163 |
+
unit_self_info_ = [np.mean(info) for info in unit_self_info]
|
| 164 |
+
return unit_self_info_
|
| 165 |
+
|
| 166 |
+
def _noun_phrases(sent):
|
| 167 |
+
noun_phrases = []
|
| 168 |
+
doc = self.nlp(sent)
|
| 169 |
+
for index, chunk in enumerate(doc):
|
| 170 |
+
if index == 0:
|
| 171 |
+
noun_phrases.append(chunk.text)
|
| 172 |
+
else:
|
| 173 |
+
noun_phrases.append(doc[index-1].whitespace_ + chunk.text)
|
| 174 |
+
return noun_phrases
|
| 175 |
+
|
| 176 |
+
if self.sent_level_self_info:
|
| 177 |
+
# in this case, the self_info is for each sentence
|
| 178 |
+
# we only need to calculate the self_info for each phrase
|
| 179 |
+
|
| 180 |
+
sent = ''.join(tokens)
|
| 181 |
+
# noun_phrases = [chunk.text for chunk in self.nlp(sent).noun_chunks]
|
| 182 |
+
noun_phrases = _noun_phrases(sent)
|
| 183 |
+
# noun_phrases[-1] = noun_phrases[-1] + ' '
|
| 184 |
+
noun_phrases_info = _unit_info(tokens, self_info, noun_phrases)
|
| 185 |
+
|
| 186 |
+
return noun_phrases, noun_phrases_info
|
| 187 |
+
|
| 188 |
+
def beautify_context(self, context: str) -> str:
|
| 189 |
+
context = re.sub(r"\s+", " ", context)
|
| 190 |
+
return context
|
| 191 |
+
|
| 192 |
+
def self_info_mask(self, sents: List[str], self_info: List[float], mask_level):
|
| 193 |
+
# mask_level: mask sentences, phrases, or tokens
|
| 194 |
+
sents_after_mask = []
|
| 195 |
+
masked_sents = []
|
| 196 |
+
|
| 197 |
+
self.ppl_threshold = np.nanpercentile(self_info, self.mask_ratio * 100)
|
| 198 |
+
|
| 199 |
+
# if title is not None:
|
| 200 |
+
# with open(os.path.join(self.path, title+'_prob_token.tsv'), 'w', encoding='utf-8') as f:
|
| 201 |
+
# for token, info in zip(tokens, self_info):
|
| 202 |
+
# f.write(f"{token}\t{info}\n")
|
| 203 |
+
# with open(os.path.join(self.path, title+'_prob_sent.tsv'), 'w', encoding='utf-8') as f:
|
| 204 |
+
# for sent, info in zip(sents, sent_self_info):
|
| 205 |
+
# f.write(f"{sent}\n{info}\n\n")
|
| 206 |
+
|
| 207 |
+
for sent, info in zip(sents, self_info):
|
| 208 |
+
if info < self.ppl_threshold:
|
| 209 |
+
masked_sents.append(sent)
|
| 210 |
+
sents_after_mask.append(self.mask_a_sent(sent, mask_level))
|
| 211 |
+
else:
|
| 212 |
+
sents_after_mask.append(sent)
|
| 213 |
+
masked_context = " ".join(sents_after_mask) if mask_level == 'sent' else "".join(sents_after_mask)
|
| 214 |
+
|
| 215 |
+
return masked_context, masked_sents
|
| 216 |
+
|
| 217 |
+
def mask_a_sent(self, sent, level):
|
| 218 |
+
if level == 'phrase':
|
| 219 |
+
return self.phrase_mask_token
|
| 220 |
+
elif level == 'sent':
|
| 221 |
+
return self.sent_mask_token
|
| 222 |
+
elif level == 'token':
|
| 223 |
+
return ''
|
| 224 |
+
|
| 225 |
+
def __call__(self, text: str, reduce_ratio: float = 0.35, reduce_level :str = 'phrase') -> List[str]:
|
| 226 |
+
context = self.beautify_context(text)
|
| 227 |
+
|
| 228 |
+
self.mask_ratio = reduce_ratio
|
| 229 |
+
|
| 230 |
+
sents = re.split(self.sent_tokenize_pattern, context)
|
| 231 |
+
sents = [sent.strip() for sent in sents if sent.strip()]
|
| 232 |
+
|
| 233 |
+
# You want the reduce happen at sentence level, phrase level, or token level?
|
| 234 |
+
assert reduce_level in ['sent', 'phrase', 'token'], f"reduce_level should be one of ['sent', 'phrase', 'token'], got {reduce_level}"
|
| 235 |
+
sent_lus, phrase_lus, token_lus = self._lexical_unit(sents)
|
| 236 |
+
lexical_level = {
|
| 237 |
+
'sent': sent_lus,
|
| 238 |
+
'phrase': phrase_lus,
|
| 239 |
+
'token': token_lus
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
# context is the reduced context, masked_sents denotes what context has been filtered out
|
| 243 |
+
context, masked_sents = self.self_info_mask(lexical_level[reduce_level].text, lexical_level[reduce_level].self_info, reduce_level)
|
| 244 |
+
return context, masked_sents
|
| 245 |
+
|
| 246 |
+
# streamlit app.py
|
| 247 |
+
# here we ask the user to input the text and the reduce ratio
|
| 248 |
+
# then we call the SelectiveContext to compress the text
|
| 249 |
+
|
| 250 |
+
st.title("Selective Context: Compress your prompt")
|
| 251 |
+
st.markdown("This is a demo for the **Selective Context** algorithm.")
|
| 252 |
+
st.markdown("Use this algorithm to **compress** your prompt, so that LLMs can deal with **2x more context**!")
|
| 253 |
+
st.markdown("- The algorithm filters out the content that is less informative. \n - You can also choose to filter out phrases or tokens instead of sentences. \n - Checkout the paper for details and experiments! [https://arxiv.org/abs/2304.12102](https://arxiv.org/abs/2304.12102).")
|
| 254 |
+
st.write("")
|
| 255 |
+
|
| 256 |
+
st.subheader("Demo")
|
| 257 |
+
|
| 258 |
+
lang = st.radio("Please choose the language: ", ('en', 'zh'))
|
| 259 |
+
ratio = st.radio("Please choose the compress ratio [we recommend 0.5]: ", (0.5, 0.2, 0.35, 0.65, 0.8))
|
| 260 |
+
reduce_level = st.radio("Please choose the reduce level: ", ('phrase', 'token', 'sent'))
|
| 261 |
+
|
| 262 |
+
text = st.text_area("Please input your text here", height=300)
|
| 263 |
+
|
| 264 |
+
@st.cache_resource()
|
| 265 |
+
def load_model(lang):
|
| 266 |
+
model = SelectiveContext(lang=lang)
|
| 267 |
+
return model
|
| 268 |
+
|
| 269 |
+
if st.button("Compress"):
|
| 270 |
+
model = load_model(lang)
|
| 271 |
+
context, masked_sents = model(text, reduce_ratio=ratio, reduce_level=reduce_level)
|
| 272 |
+
st.subheader("The compressed context is:")
|
| 273 |
+
st.code(context)
|
| 274 |
+
# st.divider()
|
| 275 |
+
st.subheader("The filtered out content is:")
|
| 276 |
+
st.write(masked_sents)
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
spacy
|
| 3 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz#en_core_web_sm
|
| 4 |
+
nltk
|
| 5 |
+
torch
|
| 6 |
+
numpy
|