File size: 16,018 Bytes
be6f6cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""
Modified From https://github.com/XXXXRT666/GPT-SoVITS
"""

from __future__ import annotations

import os
import time
from abc import ABC, abstractmethod
from contextlib import nullcontext
from typing import Any, Dict, List, MutableSequence, Optional, Tuple, Type

import torch
import torch._inductor.config
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.graphs import CUDAGraph
from torch.profiler import ProfilerAction, tensorboard_trace_handler

from AR.models.embedding import (
    SinePositionalEmbeddingNested as SinePositionalEmbedding,
)
from AR.models.embedding import TokenEmbedding

Tensor = torch.Tensor


class Sampler(nn.Module):
    def __init__(self, batch_size: int, vocab_size: int) -> None:
        super().__init__()
        self.batch_size = batch_size

    # @torch.jit.script
    def sample(
        self,
        logits: Tensor,
        previous_tokens: Tensor,
        temperature: float,
        top_k: int,
        top_p: float,
        repetition_penalty: float,
    ) -> Tensor:
        previous_tokens = previous_tokens.long()
        score = torch.gather(logits, dim=1, index=previous_tokens)
        score = torch.where(score < 0, score * repetition_penalty, score / repetition_penalty)
        logits.scatter_(dim=1, index=previous_tokens, src=score)

        sorted_logits, sorted_indices = torch.sort(logits, descending=True)
        cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
        sorted_indices_to_remove = cum_probs > top_p
        sorted_indices_to_remove[:, 0] = False  # keep at least one option
        indices_to_remove = sorted_indices_to_remove.scatter(dim=1, index=sorted_indices, src=sorted_indices_to_remove)
        logits = logits.masked_fill(indices_to_remove, -float("Inf"))

        logits = logits / max(temperature, 1e-5)

        v, _ = torch.topk(logits, top_k)
        pivot = v[:, -1].unsqueeze(-1)
        logits = torch.where(logits < pivot, -float("Inf"), logits)

        probs = torch.nn.functional.softmax(logits, dim=-1)
        q = torch.empty_like(probs).exponential_(1.0)
        idx_next = torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int32)

        return idx_next


class KVCacheABC(ABC, nn.Module):
    def __init__(self, *args, **kwds) -> None:
        super().__init__()
        self.k_cache: Tensor
        self.v_cache: Tensor
        self.n_head: int
        self.head_dim: int
        self.batch_size: int
        self.max_seq_length: int

    def empty(self):
        self.k_cache.zero_()
        self.v_cache.zero_()

    @abstractmethod
    def update(self, input_pos: Tensor, k_val: Tensor, v_val: Tensor, *args, **kwds) -> Tuple[Tensor, Tensor]: ...

    @abstractmethod
    def prefill_kv(self, k_val: Tensor, v_val: Tensor, bs: int) -> None: ...

    def forward(self):
        raise NotImplementedError()


class KVCacheNHD(KVCacheABC):
    def __init__(self, batch_size, max_seq_length, n_heads, head_dim):
        super().__init__()
        assert batch_size > 0
        cache_shape = (batch_size, max_seq_length, n_heads, head_dim)
        self.n_head = n_heads
        self.head_dim = head_dim
        self.batch_size = batch_size
        self.max_seq_length = max_seq_length

        self.register_buffer("k_cache", torch.zeros(size=cache_shape), persistent=False)
        self.register_buffer("v_cache", torch.zeros(size=cache_shape), persistent=False)

    def update(self, input_pos: Tensor, k_val: Tensor, v_val: Tensor):
        # input_pos: [B, ], k_val: [B, 1, H, D]

        index = (
            (input_pos - 1)
            .unsqueeze(-1)
            .unsqueeze(-1)
            .unsqueeze(-1)
            .expand(
                -1,
                -1,
                self.n_head,
                self.head_dim,
            )
            .to(torch.int64)
        )  # (bs, 1, num_head, head_dim)

        k_out = self.k_cache
        v_out = self.v_cache
        k_out.scatter_(1, index, k_val)
        v_out.scatter_(1, index, v_val)

        return k_out, v_out

    def empty(self):
        self.k_cache.zero_()
        self.v_cache.zero_()

    def prefill_kv(self, k_val: Tensor, v_val: Tensor, bs: int):
        # input_pos: int, k_val: [B, S, H, D]

        self.k_cache[[bs], : k_val.shape[1]] = k_val
        self.v_cache[[bs], : v_val.shape[1]] = v_val


class KVCacheHND(KVCacheABC):
    def __init__(self, batch_size, max_seq_length, n_heads, head_dim):
        super().__init__()
        assert batch_size > 0
        cache_shape = (batch_size, n_heads, max_seq_length, head_dim)
        self.n_head = n_heads
        self.head_dim = head_dim
        self.batch_size = batch_size
        self.max_seq_length = max_seq_length

        self.register_buffer("k_cache", torch.zeros(size=cache_shape), persistent=False)
        self.register_buffer("v_cache", torch.zeros(size=cache_shape), persistent=False)

    def update(self, input_pos: Tensor, k_val: Tensor, v_val: Tensor):
        # input_pos: [B, ], k_val: [B, H, 1, D]

        index = (
            (input_pos - 1)
            .unsqueeze(-1)
            .unsqueeze(-1)
            .unsqueeze(-1)
            .expand(
                -1,
                self.n_head,
                -1,
                self.head_dim,
            )
            .to(torch.int64)
        )  # (bs, num_head, 1, head_dim)

        k_out = self.k_cache
        v_out = self.v_cache
        k_out.scatter_(2, index, k_val)
        v_out.scatter_(2, index, v_val)

        return k_out, v_out

    def empty(self):
        self.k_cache.zero_()
        self.v_cache.zero_()

    def prefill_kv(self, k_val: Tensor, v_val: Tensor, bs: int):
        # input_pos: int, k_val: [B, S, H, D]

        self.k_cache[[bs], :, : k_val.shape[1]] = k_val.transpose(1, 2)
        self.v_cache[[bs], :, : v_val.shape[1]] = v_val.transpose(1, 2)


class AttentionABC(ABC, nn.Module):
    def __init__(self):
        super().__init__()
        self.n_head: int
        self.hidden_dim: int
        self.head_dim: int

        # key, query, value projections for all heads, but in a batch
        self.in_proj: nn.Linear
        self.out_proj: nn.Linear

        self.dropout = nn.Dropout(0.1)

        self._register_load_state_dict_pre_hook(self.load_hook)

    def load_hook(self, state_dict: dict, prefix, *args):
        keys_to_modify = [key for key in state_dict if "in_proj_" in key]
        for key in keys_to_modify:
            new_key = key.replace("in_proj_", "in_proj.")  # in_proj_ -> in_proj.
            state_dict[new_key] = state_dict.pop(key)

    @abstractmethod
    def forward(self, x: Tensor, input_pos: Tensor, kv_cache: KVCacheABC, *args, **kwds) -> Tensor: ...

    def prefill(self, x: Tensor, mask: Tensor, kv_cache: KVCacheABC) -> Tensor:
        bsz = x.size(0)

        outputs = []

        for bs in range(bsz):
            x_b = x[bs].unsqueeze(0)

            q, k, v = self.in_proj.forward(x_b.unsqueeze(0)).chunk(3, dim=-1)

            q = q.contiguous().view(1, -1, self.n_head, self.head_dim)
            k = k.contiguous().view(1, -1, self.n_head, self.head_dim)
            v = v.contiguous().view(1, -1, self.n_head, self.head_dim)

            kv_cache.prefill_kv(k, v, bs)

            q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v))

            attn_mask = mask[bs].unsqueeze(0).unsqueeze(0).expand(1, self.n_head, -1, -1)

            attn = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)

            attn = self.dropout.forward(attn)

            attn = attn.transpose(1, 2).contiguous().view(1, -1, self.hidden_dim)

            output = self.out_proj.forward(attn)

            outputs.append(output.squeeze(0))

        return torch.nested.nested_tensor(outputs)


class FeedForward(nn.Module):
    def __init__(self, dim: int, hidden_dim: int) -> None:
        super().__init__()
        self.linear1 = nn.Linear(dim, hidden_dim, bias=True)
        self.linear2 = nn.Linear(hidden_dim, dim, bias=True)
        self.dropout = nn.Dropout(0.1)

    def forward(self, x: Tensor) -> Tensor:
        return self.dropout.forward(self.linear2(self.dropout.forward(F.relu(self.linear1(x)))))


class TransformerBlockABC(ABC, nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.hidden_dim: int
        self.attention: AttentionABC
        self.feed_forward: FeedForward
        self.attention_norm: nn.LayerNorm
        self.ffn_norm: nn.LayerNorm
        self.dropout = nn.Dropout(0.1)

        self._register_load_state_dict_pre_hook(self.load_hook)

    def load_hook(self, state_dict: dict[str, Tensor], prefix, *args):
        for key in list(state_dict.keys()):
            new_key = (
                key.replace("self_attn", "attention")
                .replace("linear", "feed_forward.linear")
                .replace("norm1", "attention_norm")
                .replace("norm2", "ffn_norm")
            )
            state_dict[new_key] = state_dict.pop(key)

    def forward(self, x: Tensor, input_pos: Tensor, kv_cache: KVCacheABC, *args, **kwds) -> Tensor:
        h = self.attention_norm.forward(
            x
            + self.dropout.forward(
                self.attention.forward(
                    x,
                    input_pos,
                    kv_cache,
                    *args,
                    **kwds,
                )
            )
        )
        out = self.ffn_norm.forward(h + self.feed_forward.forward(h))
        return out

    def prefill(self, x: Tensor, mask: Tensor, kv_cache: KVCacheABC) -> Tensor:
        h = self.attention_norm.forward(
            x
            + self.dropout.forward(
                self.attention.prefill(
                    x,
                    mask,
                    kv_cache,
                )
            )
        )
        out = self.ffn_norm.forward(h + self.feed_forward.forward(h))
        return out


class TransformerDecoderABC(ABC, nn.Module):
    def __init__(self) -> None:
        super().__init__()

        self.hidden_dim: int
        self.n_head: int
        self.head_dim: int
        self.vocab_size: int
        self.n_layer: int

        self.layers: MutableSequence[TransformerBlockABC]

        self.max_seq_length: int
        self.max_batch_size: int

        self.input_pos: Tensor
        self.xy_pos: Tensor
        self.xy_dec: Tensor

    def forward(self, input_pos: Tensor, x: Tensor, kv_caches: MutableSequence[KVCacheABC], *args, **kwds):
        for layer, kv_cache in zip(self.layers, kv_caches):
            x = layer.forward(x, input_pos, kv_cache, *args, **kwds)
        return x

    def prefill(self, x: Tensor, mask: Tensor, kv_caches: MutableSequence[KVCacheABC]):
        for layer, kv_cache in zip(self.layers, kv_caches):
            x = layer.prefill(x, mask, kv_cache)
        return x


class T2SDecoderABC(ABC, nn.Module):
    def __init__(self) -> None:
        super().__init__()

        self.n_layer: int
        self.hidden_dim: int
        self.n_head: int

        self.head_dim: int
        self.embedding_dim: int
        self.vocab_size: int
        self.phoneme_vocab_size: int
        self.p_dropout: float
        self.max_seq_length: int
        self.max_batch_size: int
        self.EOS: int

        self.bert_proj: nn.Linear
        self.ar_text_embedding: TokenEmbedding
        self.ar_text_position: SinePositionalEmbedding
        self.ar_audio_embedding: TokenEmbedding
        self.ar_audio_position: SinePositionalEmbedding
        self.ar_predict_layer: nn.Linear
        self.h: TransformerDecoderABC

        self.kv_class: Type[KVCacheNHD] | Type[KVCacheHND]

        self._register_load_state_dict_pre_hook(self.load_hook)

    def load_hook(self, state_dict, prefix, *args):
        model_keys = [key for key in state_dict if key.startswith("model.")]
        for key in model_keys:
            new_key = key[len("model.") :]
            state_dict[new_key] = state_dict.pop(key)

    def init_cache(self, bsz: int = 0) -> MutableSequence[KVCacheABC]:
        bsz = bsz or self.h.max_batch_size
        assert bsz <= self.h.max_batch_size
        seq_lens = self.h.max_seq_length
        device = self.bert_proj.bias.device
        dtype = self.bert_proj.bias.dtype
        kvclass = self.kv_class
        return nn.ModuleList(
            [kvclass(bsz, seq_lens, self.n_head, self.head_dim) for _ in range(self.n_layer)],
        ).to(device, dtype)  # type: ignore

    @abstractmethod
    def embed(self, x: List[torch.Tensor], y: torch.Tensor, bert_features: List[Tensor]) -> Tensor: ...

    def compile(self, *args, **kwds):
        torch._inductor.config.triton.cudagraph_skip_dynamic_graphs = True
        torch._inductor.config.coordinate_descent_tuning = True
        torch._inductor.config.triton.unique_kernel_names = True
        # Experimental features to reduce compilation times, will be on by default in future
        torch._inductor.config.fx_graph_cache = True
        torch._inductor.config.triton.cudagraph_trees = True
        torch._inductor.config.triton.cudagraph_support_input_mutation = True
        self.h.compile(fullgraph=True, mode="reduce-overhead")

    def capture(self, input_pos: Tensor, x: Tensor, x_dec: Tensor, *args, **kwds) -> CUDAGraph:
        s = torch.cuda.Stream()
        s.wait_stream(torch.cuda.current_stream())

        graph = torch.cuda.CUDAGraph()

        with torch.cuda.stream(s):  # type: ignore
            for _ in range(5):
                self.h.forward(input_pos, x, *args, **kwds)
        torch.cuda.current_stream().wait_stream(s)

        with torch.cuda.graph(graph):
            x_dec.copy_(self.h.forward(input_pos, x, *args, **kwds))
        torch.cuda.synchronize()

        return graph

    @abstractmethod
    def pre_forward(self, session: Any) -> Tuple[List, Dict]: ...

    @abstractmethod
    def post_forward(self, idx: int, session: Any) -> None: ...


class TorchProfiler:
    def __init__(self, debug: bool, log_dir: str = "./profiler") -> None:
        self.debug = debug
        self.log_dir = log_dir
        self.__profiler: torch.profiler.profile

        if self.debug and not os.path.exists(self.log_dir):
            os.makedirs(self.log_dir)

        self.tensorboard_handler = tensorboard_trace_handler(self.log_dir)

    def profiler_callback(self, prof: torch.profiler.profile):
        print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=30))
        print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=30))
        self.tensorboard_handler(prof)

    @staticmethod
    def three_step_schedule(step: int) -> ProfilerAction:
        if step == 0:
            return ProfilerAction.NONE
        elif step == 1:
            return ProfilerAction.RECORD
        elif step == 2:
            return ProfilerAction.RECORD_AND_SAVE
        else:
            return ProfilerAction.NONE

    def start(self):
        if not self.debug:
            return
        assert self.__profiler is not None
        self.__profiler.step()

    def end(self):
        if not self.debug:
            return
        assert self.__profiler is not None
        self.__profiler.step()

    def profiler(self):
        if self.debug:
            activities_list = [torch.profiler.ProfilerActivity.CPU]
            if torch.cuda.is_available():
                activities_list.append(torch.profiler.ProfilerActivity.CUDA)

            self.__profiler = torch.profiler.profile(
                activities=activities_list,
                record_shapes=True,
                with_stack=True,
                with_modules=True,
                profile_memory=True,
                schedule=self.three_step_schedule,
                on_trace_ready=self.profiler_callback,
            )
            return self.__profiler
        else:
            return nullcontext()

    def record(self, func_name: str):
        if self.debug:
            return torch.profiler.record_function(func_name)
        else:
            return nullcontext()