File size: 11,396 Bytes
da27391
 
135c82e
 
 
da27391
135c82e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da27391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135c82e
 
 
 
da27391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# This code is modified from https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/paddlespeech/t2s/frontend/g2pw
# This code is modified from https://github.com/GitYCC/g2pW
def load_nvrtc():
    import torch,sys,os,ctypes
    from pathlib import Path

    if not torch.cuda.is_available():
        print("[INFO] CUDA is not available, skipping nvrtc setup.")
        return

    if sys.platform == "win32":
        torch_lib_dir = Path(torch.__file__).parent / "lib"
        if torch_lib_dir.exists():
            os.add_dll_directory(str(torch_lib_dir))
            print(f"[INFO] Added DLL directory: {torch_lib_dir}")
            matching_files = sorted(torch_lib_dir.glob("nvrtc*.dll"))
            if not matching_files:
                print(f"[ERROR] No nvrtc*.dll found in {torch_lib_dir}")
                return
            for dll_path in matching_files:
                dll_name = os.path.basename(dll_path)
                try:
                    ctypes.CDLL(dll_name)
                    print(f"[INFO] Loaded: {dll_name}")
                except OSError as e:
                    print(f"[WARNING] Failed to load {dll_name}: {e}")
        else:
            print(f"[WARNING] Torch lib directory not found: {torch_lib_dir}")

    elif sys.platform == "linux":
        site_packages = Path(torch.__file__).resolve().parents[1]
        nvrtc_dir = site_packages / "nvidia" / "cuda_nvrtc" / "lib"

        if not nvrtc_dir.exists():
            print(f"[ERROR] nvrtc dir not found: {nvrtc_dir}")
            return

        matching_files = sorted(nvrtc_dir.glob("libnvrtc*.so*"))
        if not matching_files:
            print(f"[ERROR] No libnvrtc*.so* found in {nvrtc_dir}")
            return

        for so_path in matching_files:
            try:
                ctypes.CDLL(so_path, mode=ctypes.RTLD_GLOBAL)  # type: ignore
                print(f"[INFO] Loaded: {so_path}")
            except OSError as e:
                print(f"[WARNING] Failed to load {so_path}: {e}")
load_nvrtc()
import warnings

warnings.filterwarnings("ignore")
import json
import os
import zipfile, requests
from typing import Any
from typing import Dict
from typing import List
from typing import Tuple

import numpy as np
import onnxruntime

onnxruntime.set_default_logger_severity(3)
try:
    onnxruntime.preload_dlls()
except:
    traceback.print_exc()
from opencc import OpenCC
from transformers import AutoTokenizer
from pypinyin import pinyin
from pypinyin import Style

from .dataset import get_char_phoneme_labels
from .dataset import get_phoneme_labels
from .dataset import prepare_onnx_input
from .utils import load_config
from ..zh_normalization.char_convert import tranditional_to_simplified

model_version = '1.1'


def predict(session, onnx_input: Dict[str, Any],
            labels: List[str]) -> Tuple[List[str], List[float]]:
    all_preds = []
    all_confidences = []
    probs = session.run([], {
        "input_ids": onnx_input['input_ids'],
        "token_type_ids": onnx_input['token_type_ids'],
        "attention_mask": onnx_input['attention_masks'],
        "phoneme_mask": onnx_input['phoneme_masks'],
        "char_ids": onnx_input['char_ids'],
        "position_ids": onnx_input['position_ids']
    })[0]

    preds = np.argmax(probs, axis=1).tolist()
    max_probs = []
    for index, arr in zip(preds, probs.tolist()):
        max_probs.append(arr[index])
    all_preds += [labels[pred] for pred in preds]
    all_confidences += max_probs

    return all_preds, all_confidences


def download_and_decompress(model_dir: str = 'G2PWModel/'):
    if not os.path.exists(model_dir):
        parent_directory = os.path.dirname(model_dir)
        zip_dir = os.path.join(parent_directory, "G2PWModel_1.1.zip")
        extract_dir = os.path.join(parent_directory, "G2PWModel_1.1")
        extract_dir_new = os.path.join(parent_directory, "G2PWModel")
        print("Downloading g2pw model...")
        modelscope_url = "https://www.modelscope.cn/models/kamiorinn/g2pw/resolve/master/G2PWModel_1.1.zip"
        with requests.get(modelscope_url, stream=True) as r:
            r.raise_for_status()
            with open(zip_dir, 'wb') as f:
                for chunk in r.iter_content(chunk_size=8192):
                    if chunk:
                        f.write(chunk)

        print("Extracting g2pw model...")
        with zipfile.ZipFile(zip_dir, "r") as zip_ref:
            zip_ref.extractall(parent_directory)

        os.rename(extract_dir, extract_dir_new)

    return model_dir


class G2PWOnnxConverter:
    def __init__(self,
                 model_dir: str = 'G2PWModel/',
                 style: str = 'bopomofo',
                 model_source: str = None,
                 enable_non_tradional_chinese: bool = False):
        uncompress_path = download_and_decompress(model_dir)

        sess_options = onnxruntime.SessionOptions()
        sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        sess_options.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
        sess_options.intra_op_num_threads = 2
        # self.session_g2pW = onnxruntime.InferenceSession(os.path.join(uncompress_path, 'g2pW.onnx'), sess_options=sess_options, providers=['CPUExecutionProvider'])
        self.session_g2pW = onnxruntime.InferenceSession(os.path.join(uncompress_path, 'g2pW.onnx'), sess_options=sess_options, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])

        self.config = load_config(
            config_path=os.path.join(uncompress_path, 'config.py'),
            use_default=True)

        self.model_source = model_source if model_source else self.config.model_source
        self.enable_opencc = enable_non_tradional_chinese

        self.tokenizer = AutoTokenizer.from_pretrained(self.model_source)

        polyphonic_chars_path = os.path.join(uncompress_path,
                                             'POLYPHONIC_CHARS.txt')
        monophonic_chars_path = os.path.join(uncompress_path,
                                             'MONOPHONIC_CHARS.txt')
        self.polyphonic_chars = [
            line.split('\t')
            for line in open(polyphonic_chars_path, encoding='utf-8').read()
            .strip().split('\n')
        ]
        self.non_polyphonic = {
            '一', '不', '和', '咋', '嗲', '剖', '差', '攢', '倒', '難', '奔', '勁', '拗',
            '肖', '瘙', '誒', '泊', '听', '噢'
        }
        self.non_monophonic = {'似', '攢'}
        self.monophonic_chars = [
            line.split('\t')
            for line in open(monophonic_chars_path, encoding='utf-8').read()
            .strip().split('\n')
        ]
        self.labels, self.char2phonemes = get_char_phoneme_labels(
            polyphonic_chars=self.polyphonic_chars
        ) if self.config.use_char_phoneme else get_phoneme_labels(
            polyphonic_chars=self.polyphonic_chars)

        self.chars = sorted(list(self.char2phonemes.keys()))

        self.polyphonic_chars_new = set(self.chars)
        for char in self.non_polyphonic:
            if char in self.polyphonic_chars_new:
                self.polyphonic_chars_new.remove(char)

        self.monophonic_chars_dict = {
            char: phoneme
            for char, phoneme in self.monophonic_chars
        }
        for char in self.non_monophonic:
            if char in self.monophonic_chars_dict:
                self.monophonic_chars_dict.pop(char)

        self.pos_tags = [
            'UNK', 'A', 'C', 'D', 'I', 'N', 'P', 'T', 'V', 'DE', 'SHI'
        ]

        with open(
                os.path.join(uncompress_path,
                             'bopomofo_to_pinyin_wo_tune_dict.json'),
                'r',
                encoding='utf-8') as fr:
            self.bopomofo_convert_dict = json.load(fr)
        self.style_convert_func = {
            'bopomofo': lambda x: x,
            'pinyin': self._convert_bopomofo_to_pinyin,
        }[style]

        with open(
                os.path.join(uncompress_path, 'char_bopomofo_dict.json'),
                'r',
                encoding='utf-8') as fr:
            self.char_bopomofo_dict = json.load(fr)

        if self.enable_opencc:
            self.cc = OpenCC('s2tw')

    def _convert_bopomofo_to_pinyin(self, bopomofo: str) -> str:
        tone = bopomofo[-1]
        assert tone in '12345'
        component = self.bopomofo_convert_dict.get(bopomofo[:-1])
        if component:
            return component + tone
        else:
            print(f'Warning: "{bopomofo}" cannot convert to pinyin')
            return None

    def __call__(self, sentences: List[str]) -> List[List[str]]:
        if isinstance(sentences, str):
            sentences = [sentences]

        if self.enable_opencc:
            translated_sentences = []
            for sent in sentences:
                translated_sent = self.cc.convert(sent)
                assert len(translated_sent) == len(sent)
                translated_sentences.append(translated_sent)
            sentences = translated_sentences

        texts, query_ids, sent_ids, partial_results = self._prepare_data(
            sentences=sentences)
        if len(texts) == 0:
            # sentences no polyphonic words
            return partial_results

        onnx_input = prepare_onnx_input(
            tokenizer=self.tokenizer,
            labels=self.labels,
            char2phonemes=self.char2phonemes,
            chars=self.chars,
            texts=texts,
            query_ids=query_ids,
            use_mask=self.config.use_mask,
            window_size=None)

        preds, confidences = predict(
            session=self.session_g2pW,
            onnx_input=onnx_input,
            labels=self.labels)
        if self.config.use_char_phoneme:
            preds = [pred.split(' ')[1] for pred in preds]

        results = partial_results
        for sent_id, query_id, pred in zip(sent_ids, query_ids, preds):
            results[sent_id][query_id] = self.style_convert_func(pred)

        return results

    def _prepare_data(
            self, sentences: List[str]
    ) -> Tuple[List[str], List[int], List[int], List[List[str]]]:
        texts, query_ids, sent_ids, partial_results = [], [], [], []
        for sent_id, sent in enumerate(sentences):
            # pypinyin works well for Simplified Chinese than Traditional Chinese
            sent_s = tranditional_to_simplified(sent)
            pypinyin_result = pinyin(
                sent_s, neutral_tone_with_five=True, style=Style.TONE3)
            partial_result = [None] * len(sent)
            for i, char in enumerate(sent):
                if char in self.polyphonic_chars_new:
                    texts.append(sent)
                    query_ids.append(i)
                    sent_ids.append(sent_id)
                elif char in self.monophonic_chars_dict:
                    partial_result[i] = self.style_convert_func(
                        self.monophonic_chars_dict[char])
                elif char in self.char_bopomofo_dict:
                    partial_result[i] = pypinyin_result[i][0]
                    # partial_result[i] =  self.style_convert_func(self.char_bopomofo_dict[char][0])
                else:
                    partial_result[i] = pypinyin_result[i][0]

            partial_results.append(partial_result)
        return texts, query_ids, sent_ids, partial_results