app improvement
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import plotly.express as px
|
|
4 |
import plotly.graph_objects as go
|
5 |
import numpy as np
|
6 |
import requests
|
|
|
|
|
7 |
|
8 |
### Config
|
9 |
st.set_page_config(
|
@@ -12,44 +14,224 @@ st.set_page_config(
|
|
12 |
layout="wide"
|
13 |
)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
def hate_speech_detection(text):
|
|
|
17 |
url = "https://llepogam-hate-speech-detection-api.hf.space/predict"
|
18 |
headers = {
|
19 |
"accept": "application/json",
|
20 |
"Content-Type": "application/json"
|
21 |
}
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
prediction
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
import numpy as np
|
6 |
import requests
|
7 |
+
from datetime import datetime
|
8 |
+
import time
|
9 |
|
10 |
### Config
|
11 |
st.set_page_config(
|
|
|
14 |
layout="wide"
|
15 |
)
|
16 |
|
17 |
+
# Initialize session state
|
18 |
+
if 'history' not in st.session_state:
|
19 |
+
st.session_state.history = []
|
20 |
+
if 'api_health' not in st.session_state:
|
21 |
+
st.session_state.api_health = None
|
22 |
+
|
23 |
+
# Custom CSS
|
24 |
+
st.markdown("""
|
25 |
+
<style>
|
26 |
+
.prediction-box {
|
27 |
+
padding: 20px;
|
28 |
+
border-radius: 5px;
|
29 |
+
margin: 10px 0;
|
30 |
+
}
|
31 |
+
.high-severity {
|
32 |
+
background-color: rgba(255, 0, 0, 0.1);
|
33 |
+
border: 1px solid red;
|
34 |
+
}
|
35 |
+
.medium-severity {
|
36 |
+
background-color: rgba(255, 165, 0, 0.1);
|
37 |
+
border: 1px solid orange;
|
38 |
+
}
|
39 |
+
.low-severity {
|
40 |
+
background-color: rgba(0, 255, 0, 0.1);
|
41 |
+
border: 1px solid green;
|
42 |
+
}
|
43 |
+
</style>
|
44 |
+
""", unsafe_allow_html=True)
|
45 |
+
|
46 |
+
def check_api_health():
|
47 |
+
"""Check if the API is responsive"""
|
48 |
+
try:
|
49 |
+
response = requests.get("https://llepogam-hate-speech-detection-api.hf.space/health")
|
50 |
+
return response.status_code == 200
|
51 |
+
except:
|
52 |
+
return False
|
53 |
|
54 |
def hate_speech_detection(text):
|
55 |
+
"""Make API call with error handling"""
|
56 |
url = "https://llepogam-hate-speech-detection-api.hf.space/predict"
|
57 |
headers = {
|
58 |
"accept": "application/json",
|
59 |
"Content-Type": "application/json"
|
60 |
}
|
61 |
|
62 |
+
try:
|
63 |
+
response = requests.post(
|
64 |
+
url,
|
65 |
+
headers=headers,
|
66 |
+
json={"Text": text},
|
67 |
+
timeout=10
|
68 |
+
)
|
69 |
+
response.raise_for_status()
|
70 |
+
return response.json(), None
|
71 |
+
except requests.exceptions.Timeout:
|
72 |
+
return None, "API request timed out. Please try again."
|
73 |
+
except requests.exceptions.RequestException as e:
|
74 |
+
return None, f"API error: {str(e)}"
|
75 |
+
except Exception as e:
|
76 |
+
return None, f"Unexpected error: {str(e)}"
|
77 |
|
78 |
+
def get_severity_class(probability):
|
79 |
+
"""Determine severity class based on probability"""
|
80 |
+
if probability > 0.7:
|
81 |
+
return "high-severity"
|
82 |
+
elif probability > 0.4:
|
83 |
+
return "medium-severity"
|
84 |
+
return "low-severity"
|
85 |
|
86 |
+
# Header Section
|
87 |
+
st.title("π« Offensive Speech Detection")
|
88 |
+
st.markdown("""
|
89 |
+
This application helps identify potentially offensive or harmful content in text.
|
90 |
+
It uses a machine learning model to analyze text and determine if it contains offensive speech.
|
91 |
|
92 |
+
**How it works:**
|
93 |
+
1. Enter your text in the input box below
|
94 |
+
2. The model will analyze the content and provide a prediction
|
95 |
+
3. Results show both the classification and confidence level
|
96 |
+
""")
|
97 |
|
98 |
+
# API Status
|
99 |
+
if st.button("Check API Status"):
|
100 |
+
with st.spinner("Checking API health..."):
|
101 |
+
st.session_state.api_health = check_api_health()
|
102 |
+
|
103 |
+
if st.session_state.api_health is not None:
|
104 |
+
status_color = "green" if st.session_state.api_health else "red"
|
105 |
+
status_text = "Online" if st.session_state.api_health else "Offline"
|
106 |
+
st.markdown(f"API Status: :{status_color}[{status_text}]")
|
107 |
|
108 |
+
# Example inputs
|
109 |
+
with st.expander("π Example Inputs"):
|
110 |
+
st.markdown("""
|
111 |
+
Try these example texts to test the model:
|
112 |
+
1. "Have a great day!"
|
113 |
+
2. "I disagree with your opinion."
|
114 |
+
3. "You're amazing!"
|
115 |
+
|
116 |
+
Click on any example to copy it to the input box.
|
117 |
+
""")
|
118 |
+
if st.button("Use Example 1"):
|
119 |
+
st.session_state.user_input = "Have a great day!"
|
120 |
+
if st.button("Use Example 2"):
|
121 |
+
st.session_state.user_input = "I disagree with your opinion."
|
122 |
+
if st.button("Use Example 3"):
|
123 |
+
st.session_state.user_input = "You're amazing!"
|
124 |
|
125 |
+
# FAQ Section
|
126 |
+
with st.expander("β Frequently Asked Questions"):
|
127 |
+
st.markdown("""
|
128 |
+
**Q: What is considered offensive speech?**
|
129 |
+
- A: The model identifies content that could be harmful, insulting, or discriminatory.
|
130 |
|
131 |
+
**Q: How accurate is the detection?**
|
132 |
+
- A: The model provides a confidence score with each prediction. Higher scores indicate greater confidence.
|
133 |
+
|
134 |
+
**Q: What happens to my input data?**
|
135 |
+
- A: Your text is only used for prediction and temporarily stored in your session history.
|
136 |
+
""")
|
137 |
+
|
138 |
+
# Text Input Section
|
139 |
+
max_chars = 500
|
140 |
+
user_input = st.text_area(
|
141 |
+
"Enter text to analyze:",
|
142 |
+
height=100,
|
143 |
+
key="user_input",
|
144 |
+
help="Enter the text you want to analyze for offensive content. Maximum 500 characters.",
|
145 |
+
max_chars=max_chars
|
146 |
+
)
|
147 |
|
148 |
+
# Character counter
|
149 |
+
chars_remaining = max_chars - len(user_input)
|
150 |
+
st.caption(f"Characters remaining: {chars_remaining}")
|
151 |
+
|
152 |
+
# Clear button
|
153 |
+
if st.button("Clear Input"):
|
154 |
+
st.session_state.user_input = ""
|
155 |
+
st.experimental_rerun()
|
156 |
+
|
157 |
+
# Process input
|
158 |
+
if user_input:
|
159 |
+
if len(user_input.strip()) == 0:
|
160 |
+
st.warning("Please enter some text to analyze.")
|
161 |
+
else:
|
162 |
+
with st.spinner("Analyzing text..."):
|
163 |
+
result, error = hate_speech_detection(user_input)
|
164 |
+
|
165 |
+
if error:
|
166 |
+
st.error(f"Error: {error}")
|
167 |
+
else:
|
168 |
+
# Format probability as percentage
|
169 |
+
probability_pct = result['probability'] * 100
|
170 |
+
|
171 |
+
# Create prediction box with appropriate severity class
|
172 |
+
severity_class = get_severity_class(result['probability'])
|
173 |
+
|
174 |
+
st.markdown(f"""
|
175 |
+
<div class="prediction-box {severity_class}">
|
176 |
+
<h3>Analysis Results</h3>
|
177 |
+
<p><strong>Prediction:</strong> {result['prediction']}</p>
|
178 |
+
<p><strong>Confidence:</strong> {probability_pct:.1f}%</p>
|
179 |
+
</div>
|
180 |
+
""", unsafe_allow_html=True)
|
181 |
+
|
182 |
+
# Confidence meter using Plotly
|
183 |
+
fig = go.Figure(go.Indicator(
|
184 |
+
mode = "gauge+number",
|
185 |
+
value = probability_pct,
|
186 |
+
title = {'text': "Confidence Level"},
|
187 |
+
gauge = {
|
188 |
+
'axis': {'range': [0, 100]},
|
189 |
+
'bar': {'color': "darkblue"},
|
190 |
+
'steps': [
|
191 |
+
{'range': [0, 40], 'color': "lightgreen"},
|
192 |
+
{'range': [40, 70], 'color': "orange"},
|
193 |
+
{'range': [70, 100], 'color': "red"}
|
194 |
+
]
|
195 |
+
}
|
196 |
+
))
|
197 |
+
fig.update_layout(height=300)
|
198 |
+
st.plotly_chart(fig, use_container_width=True)
|
199 |
+
|
200 |
+
# Add to history
|
201 |
+
st.session_state.history.append({
|
202 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
203 |
+
'text': user_input,
|
204 |
+
'prediction': result['prediction'],
|
205 |
+
'confidence': probability_pct
|
206 |
+
})
|
207 |
|
208 |
+
# History Section
|
209 |
+
if st.session_state.history:
|
210 |
+
with st.expander("π Analysis History"):
|
211 |
+
history_df = pd.DataFrame(st.session_state.history)
|
212 |
+
st.dataframe(
|
213 |
+
history_df,
|
214 |
+
column_config={
|
215 |
+
"timestamp": "Time",
|
216 |
+
"text": "Input Text",
|
217 |
+
"prediction": "Prediction",
|
218 |
+
"confidence": st.column_config.NumberColumn(
|
219 |
+
"Confidence",
|
220 |
+
format="%.1f%%"
|
221 |
+
)
|
222 |
+
},
|
223 |
+
hide_index=True
|
224 |
+
)
|
225 |
+
|
226 |
+
if st.button("Clear History"):
|
227 |
+
st.session_state.history = []
|
228 |
+
st.experimental_rerun()
|
229 |
|
230 |
+
# Footer
|
231 |
+
st.markdown("---")
|
232 |
+
st.markdown("""
|
233 |
+
<div style='text-align: center'>
|
234 |
+
<p>Developed with β€οΈ for safer online communication</p>
|
235 |
+
</div>
|
236 |
+
""", unsafe_allow_html=True)
|
237 |
|