app improvement again
Browse files
app.py
CHANGED
@@ -14,11 +14,6 @@ st.set_page_config(
|
|
14 |
layout="wide"
|
15 |
)
|
16 |
|
17 |
-
# Initialize session state
|
18 |
-
if 'history' not in st.session_state:
|
19 |
-
st.session_state.history = []
|
20 |
-
if 'api_health' not in st.session_state:
|
21 |
-
st.session_state.api_health = None
|
22 |
|
23 |
# Custom CSS
|
24 |
st.markdown("""
|
@@ -43,13 +38,6 @@ st.markdown("""
|
|
43 |
</style>
|
44 |
""", unsafe_allow_html=True)
|
45 |
|
46 |
-
def check_api_health():
|
47 |
-
"""Check if the API is responsive"""
|
48 |
-
try:
|
49 |
-
response = requests.get("https://llepogam-hate-speech-detection-api.hf.space/health")
|
50 |
-
return response.status_code == 200
|
51 |
-
except:
|
52 |
-
return False
|
53 |
|
54 |
def hate_speech_detection(text):
|
55 |
"""Make API call with error handling"""
|
@@ -86,8 +74,10 @@ def get_severity_class(probability):
|
|
86 |
# Header Section
|
87 |
st.title("π« Offensive Speech Detection")
|
88 |
st.markdown("""
|
89 |
-
This application helps identify potentially offensive
|
90 |
-
|
|
|
|
|
91 |
|
92 |
**How it works:**
|
93 |
1. Enter your text in the input box below
|
@@ -95,22 +85,13 @@ It uses a machine learning model to analyze text and determine if it contains of
|
|
95 |
3. Results show both the classification and confidence level
|
96 |
""")
|
97 |
|
98 |
-
# API Status
|
99 |
-
if st.button("Check API Status"):
|
100 |
-
with st.spinner("Checking API health..."):
|
101 |
-
st.session_state.api_health = check_api_health()
|
102 |
-
|
103 |
-
if st.session_state.api_health is not None:
|
104 |
-
status_color = "green" if st.session_state.api_health else "red"
|
105 |
-
status_text = "Online" if st.session_state.api_health else "Offline"
|
106 |
-
st.markdown(f"API Status: :{status_color}[{status_text}]")
|
107 |
|
108 |
# Example inputs
|
109 |
with st.expander("π Example Inputs"):
|
110 |
st.markdown("""
|
111 |
Try these example texts to test the model:
|
112 |
1. "Have a great day!"
|
113 |
-
2. "
|
114 |
3. "You're amazing!"
|
115 |
|
116 |
Click on any example to copy it to the input box.
|
@@ -126,22 +107,23 @@ with st.expander("π Example Inputs"):
|
|
126 |
with st.expander("β Frequently Asked Questions"):
|
127 |
st.markdown("""
|
128 |
**Q: What is considered offensive speech?**
|
129 |
-
- A: The model
|
|
|
|
|
|
|
130 |
|
131 |
**Q: How accurate is the detection?**
|
132 |
-
- A: The model
|
133 |
|
134 |
-
**Q: What happens to my input data?**
|
135 |
-
- A: Your text is only used for prediction and temporarily stored in your session history.
|
136 |
""")
|
137 |
|
138 |
# Text Input Section
|
139 |
-
max_chars =
|
140 |
user_input = st.text_area(
|
141 |
"Enter text to analyze:",
|
142 |
height=100,
|
143 |
key="user_input",
|
144 |
-
help="Enter the text you want to analyze for offensive content. Maximum
|
145 |
max_chars=max_chars
|
146 |
)
|
147 |
|
@@ -166,7 +148,7 @@ if user_input:
|
|
166 |
st.error(f"Error: {error}")
|
167 |
else:
|
168 |
# Format probability as percentage
|
169 |
-
probability_pct = result['probability']
|
170 |
|
171 |
# Create prediction box with appropriate severity class
|
172 |
severity_class = get_severity_class(result['probability'])
|
@@ -188,9 +170,9 @@ if user_input:
|
|
188 |
'axis': {'range': [0, 100]},
|
189 |
'bar': {'color': "darkblue"},
|
190 |
'steps': [
|
191 |
-
{'range': [0,
|
192 |
-
{'range': [
|
193 |
-
{'range': [
|
194 |
]
|
195 |
}
|
196 |
))
|
@@ -231,7 +213,7 @@ if st.session_state.history:
|
|
231 |
st.markdown("---")
|
232 |
st.markdown("""
|
233 |
<div style='text-align: center'>
|
234 |
-
<p>Developed with β€οΈ
|
235 |
</div>
|
236 |
""", unsafe_allow_html=True)
|
237 |
|
|
|
14 |
layout="wide"
|
15 |
)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Custom CSS
|
19 |
st.markdown("""
|
|
|
38 |
</style>
|
39 |
""", unsafe_allow_html=True)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
def hate_speech_detection(text):
|
43 |
"""Make API call with error handling"""
|
|
|
74 |
# Header Section
|
75 |
st.title("π« Offensive Speech Detection")
|
76 |
st.markdown("""
|
77 |
+
This application helps identify potentially offensive oontent in text provided by an user.
|
78 |
+
|
79 |
+
It uses a machine learning model to analyze text and determine if it contains offensive speech.
|
80 |
+
|
81 |
|
82 |
**How it works:**
|
83 |
1. Enter your text in the input box below
|
|
|
85 |
3. Results show both the classification and confidence level
|
86 |
""")
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# Example inputs
|
90 |
with st.expander("π Example Inputs"):
|
91 |
st.markdown("""
|
92 |
Try these example texts to test the model:
|
93 |
1. "Have a great day!"
|
94 |
+
2. "You are the worst person in the world."
|
95 |
3. "You're amazing!"
|
96 |
|
97 |
Click on any example to copy it to the input box.
|
|
|
107 |
with st.expander("β Frequently Asked Questions"):
|
108 |
st.markdown("""
|
109 |
**Q: What is considered offensive speech?**
|
110 |
+
- A: The model is using a dataset of tweets, which were tagged as offensive or not. More information on the dataset can be found here : https://huggingface.co/datasets/christophsonntag/OLID
|
111 |
+
|
112 |
+
**Q: How is the prediction done?**
|
113 |
+
- A: The model predicts a value between 1 and 0. The closer it is to 1, the more offensive is the prediction. When the prediction is higher than 0.5, the text is considered as offensive
|
114 |
|
115 |
**Q: How accurate is the detection?**
|
116 |
+
- A: The model created has an accuracy of 73.1%, which means than prediction are correct almost 3 times out of four. When the targeted values is below 0.3 or higher than 0.7, it means than there is a high level of confidence in the prediction
|
117 |
|
|
|
|
|
118 |
""")
|
119 |
|
120 |
# Text Input Section
|
121 |
+
max_chars = 140
|
122 |
user_input = st.text_area(
|
123 |
"Enter text to analyze:",
|
124 |
height=100,
|
125 |
key="user_input",
|
126 |
+
help="Enter the text you want to analyze for offensive content. Maximum 140 characters.",
|
127 |
max_chars=max_chars
|
128 |
)
|
129 |
|
|
|
148 |
st.error(f"Error: {error}")
|
149 |
else:
|
150 |
# Format probability as percentage
|
151 |
+
probability_pct = result['probability']
|
152 |
|
153 |
# Create prediction box with appropriate severity class
|
154 |
severity_class = get_severity_class(result['probability'])
|
|
|
170 |
'axis': {'range': [0, 100]},
|
171 |
'bar': {'color': "darkblue"},
|
172 |
'steps': [
|
173 |
+
{'range': [0, 0.3], 'color': "lightgreen"},
|
174 |
+
{'range': [0.3, 0.7], 'color': "orange"},
|
175 |
+
{'range': [0.7, 1], 'color': "red"}
|
176 |
]
|
177 |
}
|
178 |
))
|
|
|
213 |
st.markdown("---")
|
214 |
st.markdown("""
|
215 |
<div style='text-align: center'>
|
216 |
+
<p>Developed with β€οΈ by Louis Le Pogam</p>
|
217 |
</div>
|
218 |
""", unsafe_allow_html=True)
|
219 |
|