llepogam commited on
Commit
b802176
Β·
1 Parent(s): 0a98e8e

app improvement again

Browse files
Files changed (1) hide show
  1. app.py +17 -35
app.py CHANGED
@@ -14,11 +14,6 @@ st.set_page_config(
14
  layout="wide"
15
  )
16
 
17
- # Initialize session state
18
- if 'history' not in st.session_state:
19
- st.session_state.history = []
20
- if 'api_health' not in st.session_state:
21
- st.session_state.api_health = None
22
 
23
  # Custom CSS
24
  st.markdown("""
@@ -43,13 +38,6 @@ st.markdown("""
43
  </style>
44
  """, unsafe_allow_html=True)
45
 
46
- def check_api_health():
47
- """Check if the API is responsive"""
48
- try:
49
- response = requests.get("https://llepogam-hate-speech-detection-api.hf.space/health")
50
- return response.status_code == 200
51
- except:
52
- return False
53
 
54
  def hate_speech_detection(text):
55
  """Make API call with error handling"""
@@ -86,8 +74,10 @@ def get_severity_class(probability):
86
  # Header Section
87
  st.title("🚫 Offensive Speech Detection")
88
  st.markdown("""
89
- This application helps identify potentially offensive or harmful content in text.
90
- It uses a machine learning model to analyze text and determine if it contains offensive speech.
 
 
91
 
92
  **How it works:**
93
  1. Enter your text in the input box below
@@ -95,22 +85,13 @@ It uses a machine learning model to analyze text and determine if it contains of
95
  3. Results show both the classification and confidence level
96
  """)
97
 
98
- # API Status
99
- if st.button("Check API Status"):
100
- with st.spinner("Checking API health..."):
101
- st.session_state.api_health = check_api_health()
102
-
103
- if st.session_state.api_health is not None:
104
- status_color = "green" if st.session_state.api_health else "red"
105
- status_text = "Online" if st.session_state.api_health else "Offline"
106
- st.markdown(f"API Status: :{status_color}[{status_text}]")
107
 
108
  # Example inputs
109
  with st.expander("πŸ“ Example Inputs"):
110
  st.markdown("""
111
  Try these example texts to test the model:
112
  1. "Have a great day!"
113
- 2. "I disagree with your opinion."
114
  3. "You're amazing!"
115
 
116
  Click on any example to copy it to the input box.
@@ -126,22 +107,23 @@ with st.expander("πŸ“ Example Inputs"):
126
  with st.expander("❓ Frequently Asked Questions"):
127
  st.markdown("""
128
  **Q: What is considered offensive speech?**
129
- - A: The model identifies content that could be harmful, insulting, or discriminatory.
 
 
 
130
 
131
  **Q: How accurate is the detection?**
132
- - A: The model provides a confidence score with each prediction. Higher scores indicate greater confidence.
133
 
134
- **Q: What happens to my input data?**
135
- - A: Your text is only used for prediction and temporarily stored in your session history.
136
  """)
137
 
138
  # Text Input Section
139
- max_chars = 500
140
  user_input = st.text_area(
141
  "Enter text to analyze:",
142
  height=100,
143
  key="user_input",
144
- help="Enter the text you want to analyze for offensive content. Maximum 500 characters.",
145
  max_chars=max_chars
146
  )
147
 
@@ -166,7 +148,7 @@ if user_input:
166
  st.error(f"Error: {error}")
167
  else:
168
  # Format probability as percentage
169
- probability_pct = result['probability'] * 100
170
 
171
  # Create prediction box with appropriate severity class
172
  severity_class = get_severity_class(result['probability'])
@@ -188,9 +170,9 @@ if user_input:
188
  'axis': {'range': [0, 100]},
189
  'bar': {'color': "darkblue"},
190
  'steps': [
191
- {'range': [0, 40], 'color': "lightgreen"},
192
- {'range': [40, 70], 'color': "orange"},
193
- {'range': [70, 100], 'color': "red"}
194
  ]
195
  }
196
  ))
@@ -231,7 +213,7 @@ if st.session_state.history:
231
  st.markdown("---")
232
  st.markdown("""
233
  <div style='text-align: center'>
234
- <p>Developed with ❀️ for safer online communication</p>
235
  </div>
236
  """, unsafe_allow_html=True)
237
 
 
14
  layout="wide"
15
  )
16
 
 
 
 
 
 
17
 
18
  # Custom CSS
19
  st.markdown("""
 
38
  </style>
39
  """, unsafe_allow_html=True)
40
 
 
 
 
 
 
 
 
41
 
42
  def hate_speech_detection(text):
43
  """Make API call with error handling"""
 
74
  # Header Section
75
  st.title("🚫 Offensive Speech Detection")
76
  st.markdown("""
77
+ This application helps identify potentially offensive oontent in text provided by an user.
78
+
79
+ It uses a machine learning model to analyze text and determine if it contains offensive speech.
80
+
81
 
82
  **How it works:**
83
  1. Enter your text in the input box below
 
85
  3. Results show both the classification and confidence level
86
  """)
87
 
 
 
 
 
 
 
 
 
 
88
 
89
  # Example inputs
90
  with st.expander("πŸ“ Example Inputs"):
91
  st.markdown("""
92
  Try these example texts to test the model:
93
  1. "Have a great day!"
94
+ 2. "You are the worst person in the world."
95
  3. "You're amazing!"
96
 
97
  Click on any example to copy it to the input box.
 
107
  with st.expander("❓ Frequently Asked Questions"):
108
  st.markdown("""
109
  **Q: What is considered offensive speech?**
110
+ - A: The model is using a dataset of tweets, which were tagged as offensive or not. More information on the dataset can be found here : https://huggingface.co/datasets/christophsonntag/OLID
111
+
112
+ **Q: How is the prediction done?**
113
+ - A: The model predicts a value between 1 and 0. The closer it is to 1, the more offensive is the prediction. When the prediction is higher than 0.5, the text is considered as offensive
114
 
115
  **Q: How accurate is the detection?**
116
+ - A: The model created has an accuracy of 73.1%, which means than prediction are correct almost 3 times out of four. When the targeted values is below 0.3 or higher than 0.7, it means than there is a high level of confidence in the prediction
117
 
 
 
118
  """)
119
 
120
  # Text Input Section
121
+ max_chars = 140
122
  user_input = st.text_area(
123
  "Enter text to analyze:",
124
  height=100,
125
  key="user_input",
126
+ help="Enter the text you want to analyze for offensive content. Maximum 140 characters.",
127
  max_chars=max_chars
128
  )
129
 
 
148
  st.error(f"Error: {error}")
149
  else:
150
  # Format probability as percentage
151
+ probability_pct = result['probability']
152
 
153
  # Create prediction box with appropriate severity class
154
  severity_class = get_severity_class(result['probability'])
 
170
  'axis': {'range': [0, 100]},
171
  'bar': {'color': "darkblue"},
172
  'steps': [
173
+ {'range': [0, 0.3], 'color': "lightgreen"},
174
+ {'range': [0.3, 0.7], 'color': "orange"},
175
+ {'range': [0.7, 1], 'color': "red"}
176
  ]
177
  }
178
  ))
 
213
  st.markdown("---")
214
  st.markdown("""
215
  <div style='text-align: center'>
216
+ <p>Developed with ❀️ by Louis Le Pogam</p>
217
  </div>
218
  """, unsafe_allow_html=True)
219