Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Inc. team | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import jax | |
| import jax.lax as lax | |
| import jax.numpy as jnp | |
| from ..utils import add_start_docstrings | |
| from ..utils.logging import get_logger | |
| logger = get_logger(__name__) | |
| LOGITS_PROCESSOR_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. | |
| Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): | |
| Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam | |
| search or log softmax for each vocabulary token when using beam search | |
| kwargs (`Dict[str, Any]`, *optional*): | |
| Additional logits processor specific kwargs. | |
| Return: | |
| `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. | |
| """ | |
| class FlaxLogitsProcessor: | |
| """Abstract base class for all logit processors that can be applied during generation.""" | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray: | |
| """Flax method for processing logits.""" | |
| raise NotImplementedError( | |
| f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." | |
| ) | |
| class FlaxLogitsWarper: | |
| """Abstract base class for all logit warpers that can be applied during generation with multinomial sampling.""" | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray: | |
| """Flax method for warping logits.""" | |
| raise NotImplementedError( | |
| f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." | |
| ) | |
| class FlaxLogitsProcessorList(list): | |
| """ | |
| This class can be used to create a list of [`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to subsequently process | |
| a `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each | |
| [`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to the inputs. | |
| """ | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int, **kwargs) -> jnp.ndarray: | |
| for processor in self: | |
| function_args = inspect.signature(processor.__call__).parameters | |
| if len(function_args) > 3: | |
| if not all(arg in kwargs for arg in list(function_args.keys())[2:]): | |
| raise ValueError( | |
| f"Make sure that all the required parameters: {list(function_args.keys())} for " | |
| f"{processor.__class__} are passed to the logits processor." | |
| ) | |
| scores = processor(input_ids, scores, cur_len, **kwargs) | |
| else: | |
| scores = processor(input_ids, scores, cur_len) | |
| return scores | |
| class FlaxTemperatureLogitsWarper(FlaxLogitsWarper): | |
| r""" | |
| [`FlaxLogitsWarper`] for temperature (exponential scaling output probability distribution). | |
| Args: | |
| temperature (`float`): | |
| The value used to module the logits distribution. | |
| """ | |
| def __init__(self, temperature: float): | |
| if not isinstance(temperature, float) or not (temperature > 0): | |
| raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}") | |
| self.temperature = temperature | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| scores = scores / self.temperature | |
| return scores | |
| class FlaxTopPLogitsWarper(FlaxLogitsWarper): | |
| """ | |
| [`FlaxLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off. | |
| Args: | |
| top_p (`float`): | |
| If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or | |
| higher are kept for generation. | |
| filter_value (`float`, *optional*, defaults to -inf): | |
| All filtered values will be set to this float value. | |
| min_tokens_to_keep (`int`, *optional*, defaults to 1): | |
| Minimum number of tokens that cannot be filtered. | |
| """ | |
| def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): | |
| if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0): | |
| raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}") | |
| if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1): | |
| raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}") | |
| self.top_p = top_p | |
| self.filter_value = filter_value | |
| self.min_tokens_to_keep = min_tokens_to_keep | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| topk_scores, topk_indices = lax.top_k(scores, scores.shape[-1]) | |
| mask_scores = jnp.full_like(scores, self.filter_value) | |
| cumulative_probs = jax.nn.softmax(topk_scores, axis=-1).cumsum(axis=-1) | |
| score_mask = cumulative_probs < self.top_p | |
| # include the token that is higher than top_p as well | |
| score_mask = jnp.roll(score_mask, 1) | |
| score_mask |= score_mask.at[:, 0].set(True) | |
| # min tokens to keep | |
| score_mask = score_mask.at[:, : self.min_tokens_to_keep].set(True) | |
| topk_next_scores = jnp.where(score_mask, topk_scores, mask_scores) | |
| next_scores = jax.lax.sort_key_val(topk_indices, topk_next_scores)[-1] | |
| return next_scores | |
| class FlaxTopKLogitsWarper(FlaxLogitsWarper): | |
| r""" | |
| [`FlaxLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements. | |
| Args: | |
| top_k (`int`): | |
| The number of highest probability vocabulary tokens to keep for top-k-filtering. | |
| filter_value (`float`, *optional*, defaults to -inf): | |
| All filtered values will be set to this float value. | |
| min_tokens_to_keep (`int`, *optional*, defaults to 1): | |
| Minimum number of tokens that cannot be filtered. | |
| """ | |
| def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1): | |
| if not isinstance(top_k, int) or top_k <= 0: | |
| raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}") | |
| self.top_k = max(top_k, min_tokens_to_keep) | |
| self.filter_value = filter_value | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| batch_size, vocab_size = scores.shape | |
| next_scores_flat = jnp.full(batch_size * vocab_size, self.filter_value) | |
| topk = min(self.top_k, scores.shape[-1]) # Safety check | |
| topk_scores, topk_indices = lax.top_k(scores, topk) | |
| shift = jnp.broadcast_to((jnp.arange(batch_size) * vocab_size)[:, None], (batch_size, topk)).flatten() | |
| topk_scores_flat = topk_scores.flatten() | |
| topk_indices_flat = topk_indices.flatten() + shift | |
| next_scores_flat = next_scores_flat.at[topk_indices_flat].set(topk_scores_flat) | |
| next_scores = next_scores_flat.reshape(batch_size, vocab_size) | |
| return next_scores | |
| class FlaxForcedBOSTokenLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| [`FlaxLogitsProcessor`] that enforces the specified token as the first generated token. | |
| Args: | |
| bos_token_id (`int`): | |
| The id of the token to force as the first generated token. | |
| """ | |
| def __init__(self, bos_token_id: int): | |
| self.bos_token_id = bos_token_id | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| new_scores = jnp.full(scores.shape, -float("inf")) | |
| apply_penalty = 1 - jnp.bool_(cur_len - 1) | |
| scores = jnp.where(apply_penalty, new_scores.at[:, self.bos_token_id].set(0), scores) | |
| return scores | |
| class FlaxForcedEOSTokenLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| [`FlaxLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached. | |
| Args: | |
| max_length (`int`): | |
| The maximum length of the sequence to be generated. | |
| eos_token_id (`int`): | |
| The id of the token to force as the last generated token when `max_length` is reached. | |
| """ | |
| def __init__(self, max_length: int, eos_token_id: int): | |
| self.max_length = max_length | |
| self.eos_token_id = eos_token_id | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| new_scores = jnp.full(scores.shape, -float("inf")) | |
| apply_penalty = 1 - jnp.bool_(cur_len - self.max_length + 1) | |
| scores = jnp.where(apply_penalty, new_scores.at[:, self.eos_token_id].set(0), scores) | |
| return scores | |
| class FlaxMinLengthLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| [`FlaxLogitsProcessor`] enforcing a min-length by setting EOS probability to 0. | |
| Args: | |
| min_length (`int`): | |
| The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`. | |
| eos_token_id (`int`): | |
| The id of the *end-of-sequence* token. | |
| """ | |
| def __init__(self, min_length: int, eos_token_id: int): | |
| if not isinstance(min_length, int) or min_length < 0: | |
| raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}") | |
| if not isinstance(eos_token_id, int) or eos_token_id < 0: | |
| raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}") | |
| self.min_length = min_length | |
| self.eos_token_id = eos_token_id | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| # create boolean flag to decide if min length penalty should be applied | |
| apply_penalty = 1 - jnp.clip(cur_len - self.min_length, 0, 1) | |
| scores = jnp.where(apply_penalty, scores.at[:, self.eos_token_id].set(-float("inf")), scores) | |
| return scores | |
| class FlaxSuppressTokensAtBeginLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| [`FlaxLogitsProcessor`] supressing a list of tokens as soon as the `generate` function starts generating using | |
| `begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are not sampled at the | |
| begining of the generation. | |
| Args: | |
| begin_suppress_tokens (`List[int]`): | |
| Tokens to not sample. | |
| begin_index (`int`): | |
| Index where the tokens are suppressed. | |
| """ | |
| def __init__(self, begin_suppress_tokens, begin_index): | |
| self.begin_suppress_tokens = list(begin_suppress_tokens) | |
| self.begin_index = begin_index | |
| def __call__(self, input_ids, scores, cur_len: int): | |
| apply_penalty = 1 - jnp.bool_(cur_len - self.begin_index) | |
| scores = jnp.where(apply_penalty, scores.at[:, self.begin_suppress_tokens].set(-float("inf")), scores) | |
| return scores | |
| class FlaxSuppressTokensLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| [`FlaxLogitsProcessor`] suppressing a list of tokens at each decoding step. The processor will set their log probs | |
| to be `-inf` so they are not sampled. | |
| Args: | |
| suppress_tokens (`list`): | |
| Tokens to not sample. | |
| """ | |
| def __init__(self, suppress_tokens: list): | |
| self.suppress_tokens = list(suppress_tokens) | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| scores = scores.at[..., self.suppress_tokens].set(-float("inf")) | |
| return scores | |
| class FlaxForceTokensLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| [`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to | |
| token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens | |
| to `-inf` so that they are sampled at their corresponding index. | |
| Args: | |
| force_token_map (`list`): | |
| Map giving token ids and indices where they will be forced to be sampled. | |
| """ | |
| def __init__(self, force_token_map): | |
| force_token_map = dict(force_token_map) | |
| # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the | |
| # index of the array corresponds to the index of the token to be forced, for XLA compatibility. | |
| # Indexes without forced tokens will have a negative value. | |
| force_token_array = jnp.ones((max(force_token_map.keys()) + 1), dtype=jnp.int32) * -1 | |
| for index, token in force_token_map.items(): | |
| if token is not None: | |
| force_token_array = force_token_array.at[index].set(token) | |
| self.force_token_array = jnp.int32(force_token_array) | |
| def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray: | |
| def _force_token(generation_idx): | |
| batch_size = scores.shape[0] | |
| current_token = self.force_token_array[generation_idx] | |
| new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf") | |
| updates = jnp.zeros((batch_size, 1), dtype=scores.dtype) | |
| new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token)) | |
| return new_scores | |
| scores = lax.cond( | |
| cur_len >= self.force_token_array.shape[0], | |
| # If the current length is geq than the length of force_token_array, the processor does nothing. | |
| lambda: scores, | |
| # Otherwise, it may force a certain token. | |
| lambda: lax.cond( | |
| self.force_token_array[cur_len] >= 0, | |
| # Only valid (positive) tokens are forced | |
| lambda: _force_token(cur_len), | |
| # Otherwise, the processor does nothing. | |
| lambda: scores, | |
| ), | |
| ) | |
| return scores | |
| class FlaxWhisperTimeStampLogitsProcessor(FlaxLogitsProcessor): | |
| r""" | |
| Whisper specific Processor. This processor can be used to force a list of tokens. The processor will set their log | |
| probs to `inf` so that they are sampled at their corresponding index. | |
| Args: | |
| generate_config (`GenerateConfig`): | |
| The generate config used to generate the output. The following parameters are required: | |
| eos_token_id (`int`, *optional*, defaults to 50257): | |
| The id of the *end-of-sequence* token. | |
| no_timestamps_token_id (`int`, *optional*, defaults to 50363): | |
| The id of the `"<|notimestamps|>"` token. | |
| max_initial_timestamp_index (`int`, *optional*, defaults to 1): | |
| Used to set the maximum value of the initial timestamp. This is used to prevent the model from | |
| predicting timestamps that are too far in the future. | |
| """ | |
| def __init__(self, generate_config, model_config, decoder_input_length): | |
| self.eos_token_id = generate_config.eos_token_id | |
| self.no_timestamps_token_id = generate_config.no_timestamps_token_id | |
| self.timestamp_begin = generate_config.no_timestamps_token_id + 1 | |
| self.begin_index = decoder_input_length + 1 | |
| if generate_config.is_multilingual: | |
| # room for language token and task token | |
| self.begin_index += 2 | |
| if hasattr(generate_config, "max_initial_timestamp_index"): | |
| self.max_initial_timestamp_index = generate_config.max_initial_timestamp_index | |
| else: | |
| self.max_initial_timestamp_index = model_config.vocab_size | |
| if self.max_initial_timestamp_index is None: | |
| self.max_initial_timestamp_index = model_config.vocab_size | |
| def __call__(self, input_ids, scores, cur_len): | |
| # suppress <|notimestamps|> which is handled by without_timestamps | |
| scores = scores.at[:, self.no_timestamps_token_id].set(-float("inf")) | |
| def handle_pairs(input_ids_k, scores_k): | |
| last_was_timestamp = jnp.where((cur_len - self.begin_index) >= 1, True, False) | |
| last_was_timestamp = jnp.where( | |
| input_ids_k[cur_len - 1] >= self.timestamp_begin, | |
| True and last_was_timestamp, | |
| False, | |
| ) | |
| penultimate_was_timestamp = jnp.where((cur_len - self.begin_index) < 2, True, False) | |
| penultimate_was_timestamp = jnp.where( | |
| input_ids_k[cur_len - 2] >= self.timestamp_begin, | |
| True, | |
| penultimate_was_timestamp, | |
| ) | |
| return jnp.where( | |
| last_was_timestamp, | |
| jnp.where( | |
| penultimate_was_timestamp > 0, | |
| scores_k.at[self.timestamp_begin :].set(-float("inf")), | |
| scores_k.at[: self.eos_token_id].set(-float("inf")), | |
| ), | |
| scores_k, | |
| ) | |
| scores = jax.vmap(handle_pairs)(input_ids, scores) | |
| apply_max_initial_timestamp = jnp.where(cur_len == self.begin_index, True, False) | |
| apply_max_initial_timestamp = jnp.where( | |
| self.max_initial_timestamp_index is not None, | |
| True and apply_max_initial_timestamp, | |
| False, | |
| ) | |
| last_allowed = self.timestamp_begin + self.max_initial_timestamp_index | |
| scores = jnp.where( | |
| apply_max_initial_timestamp, | |
| scores.at[:, last_allowed + 1 :].set(-float("inf")), | |
| scores, | |
| ) | |
| # if sum of probability over timestamps is above any other token, sample timestamp | |
| logprobs = jax.nn.log_softmax(scores, axis=-1) | |
| def handle_cumulative_probs(logprobs_k, scores_k): | |
| timestamp_logprob = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1) | |
| max_text_token_logprob = jnp.max(logprobs_k[: self.timestamp_begin]) | |
| return jnp.where( | |
| timestamp_logprob > max_text_token_logprob, | |
| scores_k.at[: self.timestamp_begin].set(-float("inf")), | |
| scores_k, | |
| ) | |
| scores = jax.vmap(handle_cumulative_probs)(logprobs, scores) | |
| return scores | |